
Optimal Combination of Techniques
in Multiple Importance Sampling

Vlastimil Havran and Mateu Sbert

CS–TR–DCGI–2014–2 August 2014

Technical Report Series of DCGI, Volume 4, Year 2014

Department of Computer Graphics and Interaction

Czech Technical University in Prague, CZ

Faculty of Electrical Engineering

Website: http://dcgi.fel.cvut.cz



Authors’ Addresses

Vlastimil Havran
Department of Computer Graphics and Interaction
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nam. 13, 12135 Praha 2
Czech Republic
E-mail: havran AT fel DOT cvut DOT cz
Web: http://dcgi.fel.cvut.cz/members/havran

Mateu Sbert
Department of Informatica i Matematica Aplicada
University of Girona
Edifici P4, Campus Montilivi, 17071 Girona
Spain
E-mail: mateu AT ima DOT udg DOT edu
Web: http://ima.udg.edu/~mateu

Funding Acknowledgements

This work has been partially funded by the Czech Science Foundation under research
programs P202/12/2413 and GA14-19213S and by the Grant Agency of the Czech Tech-
nical University in Prague, grant No. SGS13/214/OHK3/3T/13, and on the Spanish
side by grant TIN2013-47276-C6-1-R from the Spanish Government and 2014 SGR 1232
from the Catalan Government and National Natural Science Foundation of China (Nos.
61372190 and 61331018).

Technical Report Series of DCGI, available at http://dcgi.fel.cvut.cz/techreps,
Department of Computer Graphics and Interaction, Czech Technical University in Prague,
Faculty of Electrical Engineering, Czech Republic.

ISSN 1805-6180

Copyright c© Department of Computer Graphics and Interaction, Faculty of Electrical
Engineering, Czech Technical University in Prague, August 2014.



Abstract

Since its introduction by Veach, the Multiple Importance Sampling (MIS) technique has
been widely used in Computer Graphics in many rendering algorithms. MIS is based on
weighting several sampling techniques into a single estimator. When the mixing weights
are taken such that the sample contributions are balanced, i.e. they are the same for all
techniques, it becomes a balance heuristic. It has been used since its invention almost
exclusively on equal sampling for all techniques, and until now the question whether
unequal sampling can give better variance, has raised little interest, maybe due to its
intrinsic difficulty and also due to the fact that good results were already obtained with
equal sampling. The most interesting cases of the use of MIS in Computer Graphics,
where an environment map is a particular case, correspond to the integral of a product of
functions. Based on the properties of the balance heuristic MIS as a weighted mixture of
distributions, weights proportional to the number of samples, we obtain for this kind of
integral an implicit closed formula for the optimal sampling. We also take into account
the cost of each sampling technique. Although this closed formula cannot be written
in an explicit way, we outline an iterative procedure for obtaining the optimal values.
To bypass the combinatorially growing cost of the iterative procedure, we introduce a
sound heuristic approximation based on the optimal combination of two independent
estimators with known variance. We validate our theory with the results from imple-
menting 1-dimensional function examples and 2-dimensional examples of environment
map illumination.

Keywords

global illumination, rendering equation analysis, multiple importance sampling, Monte
Carlo, statistics
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1 Introduction

Since its introduction by Veach and Guibas [VG95], Multiple Importance Sampling (MIS) tech-
nique has been widely used in Computer Graphics, particularly in rendering. Its usefulness and
efficiency in generating nice images has even been recognized by a 2014 Hollywood Academy
award to Eric Veach. MIS is based on combining several sampling techniques into a single
estimator. Veach proved that, from the several MIS techniques that he presented, the balance
heuristic gives the least variance, supposing that the number of samples for each technique is
the same. Veach showed that the balance heuristic was the same as the classic Monte Carlo
estimator, using a mixture of techniques, where the weights of each technique in the mixture are
proportional to the number of samples taken from the technique. He used an equal number of
samples for each technique, and the balance heuristic was almost exclusively used thereafter as
a combination with an equal number of samples, or equivalently, as a mixture of distributions
with equal weights.

To the best of our knowledge, the question whether sampling other than equal sampling in
MIS can give better variance, has only been raised in a recent paper by Lu et al. [LPG13], which
uses rough Taylor second order approximation around a weight of 1/2 for the environment map
problem, combining the two sampling techniques, BRDF and a sampling environment map, and
in [CSKA01], where the cost of sampling is also taken into consideration when minimizing the
variance of the combination of stochastic iteration and bidirectional path tracing. However,
neither paper exploited to the full the fact that the MIS balance heuristic is a mixture of
distributions technique.

The most interesting cases in rendering algorithms are the integral of the product of the
functions. Based on the properties of the mixture of distributions, and in the usual importance
sampling Monte Carlo techniques, we will obtain for this kind of integral, and for any num-
ber of product functions, an implicit closed formula that the different weights have to fulfill
for optimality. In other words, we give a recipe for the number of samples to take for each
strategy in order to minimize the variance. We also take into account the cost of each sam-
pling technique. The resulting formula cannot be written in an explicit way, but we outline an
iterative procedure for obtaining the optimal values. As this iterative procedure suffers from
combinatorial exposition for increasing the number of functions in the product, we introduce a
sound heuristic approximation formula to compute the distribution of samples from the sam-
pling functions. Through 1-dimensional function examples and 2-dimensional function examples
with illumination by an environment map, we show examples of the efficiency of our approach.

This technical report is further structured as follows. In the next section we survey related
work. In section 3 we describe importance sampling and its use in the rendering equation,
together with optimal weights for a linear combination of estimators. In section 4 we present
the main contribution. We derive the optimal weights for MIS, together with an approximation
of these weights in a simpler formula. In section 5 we provide the results for the sampling
algorithm on an example application, the multiplication of BRDF and an environment map, as
defined by the rendering equation. The last section 6 contains the conclusions, and is followed
up by appendices containing selected theoretical proofs and exemplary results.
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2 Related work

We review here the MIS algorithms for rendering, light transport, and other related work.
MIS algorithms in rendering. Since its introduction by Veach and Guibas [VG95] MIS

algorithms, mainly with a balance heuristic, have been used for rendering. They were first
used for Bidirectional Path Tracing by Veach and Guibas [VG94] themselves. Since then, they
have found numerous uses in global illumination rendering algorithms, including those with
scattering, in particular the use of the balance heuristic. Examples of recent publications using
MIS are the work by van Antwerpen [vA11], by Bouchard et al. [BIOP13], the Photon Beam
Diffusion method by Habel et al. [HCJ13].

MIS optimization. Csonka et al. [CSKA01] used MIS to combine bidirectional path
tracing and ray-bundle based stochastic iteration, generalizing MIS to a sequence of integrals.
As the computation cost and the contribution to the final result of a single integral vary, they
introduced the concept of cost in MIS, approximated the variance, and minimized it through a
gradient search method and Lagrange multipliers, with the cost as a constraint.

Lu et al. [LPG13], using the fact that balance heuristic MIS is importance sampling with a
mixture of densities, approximated the variance for the product of two functions representing
BRDF and an environment map, using a second order Taylor expansion around a value of 1/2,
which corresponds to an equal number of samples for the two coefficients. From this expansion
they obtained optimal coefficients, but the farther these coefficients were from the 1/2 value,
the worse the approximation was. The cost was not included in the scheme.

Adaptive sampling schemes inspired by MIS. There has been progress in research on
adaptive sampling schemes, including those based on MIS. Among the advances that have been
made, we would like to point here to the older work of Hesterberg [Hes88] introducing defensive
importance sampling, which limits the variance explosion of importance sampling. The review
article by Owen and Zhou [OZ00] surveys the principles in mixture and multiple importance
sampling at that time. More recently, Doc et al. [DGMR07] derive sufficient convergence con-
ditions for adaptive mixtures. Cornet et al. [CMMR12] (applied to final gathering in [TOS10])
present optimal recycling of past simulations in iterative adaptive multiple importance sampling
algorithms. This work was extended by Marin et al. [MPS12].

The practitioners in computer graphics deal with the problem of optimization for importance
sampling by many approaches, including ad-hoc formulae. Even for a simple case such as
illuminating an environment map with importance sampling is needed and is shown to be
efficient by Colbert [CPF10]. Their proposed solution is valid only for a single preselected
BRDF model restricting the parameters to a one- or two-dimensional environment map and a
single environment map. In contrast we stay in our approach with simple statistical tools.

Light Transport Analysis. Light transport analysis has made major progress in the last
decade, and there have been a number of papers related to our approach. Ramamoorthi and
Hanrahan [RH01] presented the signal processing framework for inverse rendering. Ramamoor-
thi et al. [RH04] then studied reflection for the environment map and formulated the product
of the environment map and BRDF as a convolution, for which they used the Fourier domain.
Another approach was taken by Durand et al. [DHS+05], where Fourier analysis is applied for
different components of light paths. Ramamoorthi et al. [RMB07] went on to extend their

3



former approach [RH01] to first-order and second order analysis of lighting. Ramamoorthi
et al. [RAMN12] studied combination of statistics and frequency analysis of visibility for soft
shadows, following the note of Durand [Dur11], where he studied the relation between variance
and the power spectrum. More recently, Subr and Kautz [SK13] studied stochastic sampling
strategies using Fourier analysis to estimate the bias from the spectrum. Recently, Belcour
et al. [BSS+13] have also accelerated computation in the time-space domain such as motion
blur and depth of field through adaptive sampling and reconstruction based on predicting the
anisotropy and the bandwidth of the integrand.

Other literature. We will not refer here to all related publications, including those re-
ferred to as double and triple product integration in rendering, rendering with many lights
methods [DKH+13], density estimation, precomputed radiance transfer [Ram09], and impor-
tance sampling schemes [Die11]. Although they are all interesting and related to our approach
via the rendering equation, they attack the problem from different perspectives.

Our work differs significantly from the adaptive MIS schemes and other papers. We limit
ourselves to the product of any number of functions, but we provide the closed formula for
the optimal weights of deterministic sampling densities for MIS with the balance heuristic that
minimize the variance of the function product, including cases with a different sampling cost.
This is highly useful in global illumination algorithms solving a rendering equation that contains
the product of the functions.
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3 Importance sampling

In this section, we briefly recall importance sampling and its application to rendering algorithms.
Then, as an example, we study direct illumination of the surface from environment maps.

3.1 Importance sampling for product of functions

For the purposes of this paper, we first recall the idea of importance sampling. The reader can
consult the Appendix A for the basic notions of random variable, estimator and variance, and
indeed the classic references on Monte Carlo [RK08, KW86].

When solving an integral by Monte Carlo, I =
∫

Ω h(x)dx, we first have to convert the
integral to an expected value, I = E[h(X)/f(X)] =

∫
Ω (h(x)/f(x)) f(x)dx, where f(x) is a

probability density function (abbreviated as pdf), and then we consider the estimator

Î =
1

N

N∑
i=1

h(xi)

f(xi)
, (3.1)

where xi are N samples drawn from according to pdf f(x). Using index i we stress that the
estimator depends on N . We have that E[Î] = E[h(X)/f(X)] = I, where the symbol ”hat”
over a variable X means an estimator of X. The more similar the pdf f(x) is to h(x), the
smaller the variance will be. This is called importance sampling.

An unbiased estimator of the variance V [h(X)/f(X)] will then be:

̂V [h(X)/f(X)] =

∑N
i=1

(
h(xi)
f(xi)

−
(∑N

i=1
h(xi)
f(xi)

)
/N
)2

(N − 1)
(3.2)

And remembering that an estimator is the average sum of N independent identically distributed
variables, variance V [Î] is then:

V [Î] =
1

N
V [h(X)/f(X)] ≈

∑N
i=1

(
h(xi)
f(xi)

−
(∑N

i=1
h(xi)
f(xi)

)
/N
)2

N.(N − 1)
(3.3)

For an unbiased estimator, the expected value of the Mean Square Error (MSE) is equal to
the variance.

As a particular case, and for the purposes of this paper, suppose we want to solve by MC
the integral I =

∫
Ω h1(x)h2(x)dx where h1(x) and h2(x) are non-negative within the domain

of integration. We can choose to do importance sampling on h2(x), for example. We need to
compute the normalization factor s2 =

∫
Ω h2(x)dx, and then we have the pdf 1

s2
h2(x). We can

write I = s2

∫
Ω h1(x) (h2(x)/s2) dx = s2E[h1(x)] = E[s2h1(x)], and then using the estimator

eq. 3.1 to compute the integral we obtain

I ≈ Î = s2
1

N

N∑
i=1

h1(xi) (3.4)
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Observe that the variance would then be:

V [s2h1(X)] = (s2)2V [h1(X)] (3.5)

and using the definition of variance (see Appendix A, eq. 6.3) we get:

V [Î] = V [s2h1(X)]

= (s2)2

(∫
Ω
h1(x)2 (h2(x)/s2) dx− (E[h1(X)])2

)
(3.6)

= s2

∫
Ω
h1(x)2h2(x)dx− I2 (3.7)

as s2E[h1(X)] = I. An unbiased estimator of the variance V [Î] when the samples are drawn
according to h2(x) is:

V̂ [Î] =

∑N
i=1

(
s2h1(xi)−

(∑N
i=1 s2h1(xi)

)
/N
)2

(N − 1)

= (s2)2

∑N
i=1

(
h1(xi)−

(∑N
i=1 h1(xi)

)
/N
)2

(N − 1)
(3.8)

We can generalize eq. 3.7 to the product of any number of non-negative functions I =∫
Πihi(x)dx:

Vk[Î] = sk

∫
Ω

(
Πi 6=kh

2
i (x)

)
hk(x)dx− I2, (3.9)

where by Vk[I] we mean the variance when doing importance sampling with respect to the hk(x)
function and sk is the corresponding normalization constant. Observe that all these importance
sampling estimators are unbiased, and thus their expected value is I =

∫
Πihi(x)dx, as we can

always restrict the integration domain to non-zero values of the product of functions, i.e., where
Πihi(x) 6= 0.

3.2 Importance sampling in the rendering equation for illumi-
nation by an environment map

We refer the reader to the Appendix B for the definition of BRDF. The rendering equa-
tion [Kaj86] expresses the radiance with zero self-emission from a surface with normal vector ~n
as:

L(x, ωo) =

∫
Ω
L(x, ωi)fr(x, ωi, ωo)(ωi.~n)dωi (3.10)

Without loss of generality and for the purposes of studying the variance, we restrict our
study to the case when the incoming illumination is represented by an environment map with
radiant intensity R(ωi) given by unit [W/sr]. Then the eq. 3.10 simplifies to:

L(x, ωo) =

∫
Ω
R(ωi)fr(x, ωi, ωo)(ωi.~n)dωi (3.11)
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Suppose we want to solve this equation by MC importance sampling. When we do im-
portance sampling on incoming radiant intensity R(ωi), then the estimator for the outgoing
radiance becomes:

L(x, ωo) ≈ R∗
1

N

N∑
i=1

fr(x, ωi, ωo)(ωi.~n), (3.12)

where the integrated radiant intensity is computed as:

R∗ =

∫
Ω
R(ωi)dωi (3.13)

Another possibility is to do importance sampling on fr times cosine. We end up in the
estimator for radiance as

L(x, ωo) ≈ a(x, ωo)
1

N

N∑
i=1

R(ωi), (3.14)

where a(x, ωo) is the albedo of BRDF defined as:

a(x, ωo) =

∫
Ω
fr(x, ωi, ωo).(ωi.~n)dωi (3.15)

3.3 Analysis for a constant environment map and arbitrary
BRDF

Considering R(ωi) = const. = R the estimator in eq. 3.12 simplifies to:

L(x, ωo) ≈ 2π
R

N

N∑
i=1

fr(x, ωi, ωo).(ωi.~n) (3.16)

as for eq. 3.13 the R∗ = 2π for constant incoming radiance R = 1. We can then estimate the
variance V [L(x, ωo)] of estimator eq. 3.16 and hence the noise in the image.

For the second estimator, the outgoing radiance from eq. 3.14 becomes:

L(x, ωo) = R

∫
Ω
fr(x, ωi, ωo)(ωi.~n)dωi = R.a(x, ωo) (3.17)

3.4 Analysis for a non-constant environment map and arbitrary
BRDF

In order to simplify the analysis, we consider full visibility here, which does not restrict the gen-
erality of the formulae below. If the environment map is not constant, L(x, ωo) along a primary
ray for the point on an object illuminated by the environment map can be computed with the
two importance sampling estimators defined above, eq. 3.12 and eq. 3.14. Let us call them L1

and L2. They correspond respectively to the expected value E[R∗fr(x, ωi, ωo)(ωi.~n)] when using

as pdf R(ωi)
R∗ , and to the expected value E[a(x, ωo)R(ωi)] when using as pdf fr(x,ωi,ωo).(ωi.~n)

a(x,ωo) , with

integrated radiant intensity R∗ equal to:

R∗ =

∫
Ω
R(ωi)dω, (3.18)
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where R(ωi) is the radiant intensity of environment map at direction ωi. The two estimators in
eq. 3.12 and eq. 3.14 then become:

̂L1(x, ωo) = R∗
1

N

N∑
i=1

fr(x, ωi, ωo)(ωi.~n) (3.19)

̂L2(x, ωo) = a(x, ωo)
1

N

N∑
i=1

R(ωi) (3.20)

The variances V1 = V [R∗fr(x, ωi, ωo)(ωi.~n)], V2 = V [a(x, ωo)R(ωi)] can be estimated by eq. 3.5
and eq. 3.9.

Using eq. 3.7, their exact values are equal to:

V1 = R∗
∫

(fr(x, ωi, ωo))
2(ωi.~n)2R(ωi)dω − (L(x, ωo))

2 (3.21)

V2 = a(x, ωo)

∫
(R(ωi))

2fr(x, ωi, ωo).(ωi.~n)dω − (L(x, ωo))
2 (3.22)

Suppose we now want to use N samples distributed among the two estimators, n1 + n2 = N .
Any convex combination of L1 and L2, αL1 + (1 − α)L2 is an unbiased estimator of L(x, ωo),
i.e., E[αL1 + (1− α)L2] = αE[L1] + (1− α)E[L2] = L(x, ωo), as E[L1] = E[L2] = L(x, ωo). Its
variance is equal to:

V [αL1 + (1− α)L2] = α2V [L1] + (1− α)2V [L2] (3.23)

=
α2

n1
V1 +

(1− α)2

n2
V2

When we fix α = const then with the method of Lagrange multipliers we can obtain the values
n1 and n2 for minimum variance:

n1 =
N.α.

√
V1

α
√
V1 + (1− α)

√
V2

and n2 =
N.(1− α).

√
V2

α
√
V1 + (1− α)

√
V2
. (3.24)

It can easily be shown that a similar result is also valid for a convex combination of M inde-
pendent estimators, i.e.,

nk =
N.αk.

√
Vk∑M

k αk
√
Vk
, (3.25)

where Vk is the variance of estimator k. The optimal variance will then be

M∑
k

α2
k

Vk
nk

=

M∑
k

αk

√
Vk

(∑M
k αk

√
Vk

)
N

=

(∑M
k αk

√
Vk

)2

N
(3.26)

If we try to find the αk coefficients that minimize eq. 3.26, the only trivial solution is that
all variances are equal, Vk = V , with minimum variance value V/N .

If the nk values are known, using again Lagrange multipliers we find that the optimal
combination is:

αk =
nk/Vk∑M
k nk/Vk

(3.27)
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Observe that in general, for M estimators,
∑M

k nk/Vk is the inverse of the harmonic mean
(defined as H({xi}) = M∑M

i 1/xi
) of the nk/Vk values times M , as the harmonic mean H({Vk/nk})

would be:

H({Vk/nk}) =
M∑M

k nk/Vk
(3.28)

Thus we get the formula weighting coefficients αk:

αk =
H({Vk/nk})nk

MVk
(3.29)

The optimal variance Vmin can be then derived to be equal to

Vmin =
1∑M

k nk/Vk
=
H({Vk/nk})

M
(3.30)

The optimal combination when the variances are known is presented for example in [GD59].
We can try to minimize eq. 3.30 for a fixed budget of samples, i.e.,

∑M
k nk = N fixed, but

the result is simply that we sample only the estimator with less variance.
Let us try to optimize at the same time αk and nk. Using the method of Lagrange multipliers

we have to derivate with respect to αk and nk and we get:

M∑
k

α2
k

Vk
nk

+ λ1

(
M∑
k

nk −N

)
+ λ2

(
M∑
k

αk − 1

)
(3.31)

We obtain for all k two equations

2αk
Vk
nk

+ λ2 = 0 and − α2
k

Vk
n2
k

+ λ1 = 0 (3.32)

From both equations we get:

αk
nk

= −2λ1

λ2
=

1

N
(3.33)

i.e., for all k, αk
nk

is constant. Substituting in eq. 3.32 we see that there is only a trivial solution
when for all k the Vk = V are the same. In this case the variance would be as expected:

M∑
k

α2
k

Vk
nk

=

M∑
k

αk
V

N
=
V

N
(3.34)

The conclusions so far are that, if you have a fixed combination of weighting coefficients
{αk}, then use eq. 3.25 to compute the count of samples. If you have a fixed count of samples
for each estimator {nk}, then use eq. 3.27 to compute the weighting coefficients. In that case, if
you know in advance which is the most efficient estimator, only sample that estimator. If not,
you can use batches of samples to estimate the variance of the different estimators and then
combine them using eq. 3.27.
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4 Multiple importance sampling with
optimal weights

Veach and Guibas [VG95] introduced the Multiple Importance Sampling estimator, which al-
lowed different sampling techniques to be combined in a novel way. They proved that the
optimal heuristic MIS case was when the weights were proportional to the number of samples,
a technique that was named the balance heuristic. Given M sampling techniques (i.e., pdf’s)
fk(x), if we sample nk samples xk,i from each,

∑
k nk = N , the balance heuristic MIS estimator

for I =
∫
g(x)dx is given by the sum

Î =

M∑
k

nk∑
i

g(xk,i)∑
j njfj(xk,i)

(4.1)

Veach later observed (see [Vea97, section 9.2.2.1]) that this estimator can be written, for
the case of the balance heuristic, as a standard Monte Carlo estimator, where the pdf f(x) is
given by a deterministic mixture of distributions

Î =
1

N

M∑
k

nk∑
i

g(xk,i)∑
j(nj/N)fj(xk,i)

(4.2)

=
1

N

M∑
k

nk∑
i

g(xk,i)∑
j αjfj(xk,i)

=
1

N

N∑
l

g(xl)∑
j αjfj(xl)

,

where in the samples we have dropped the subindex k for the sampled technique, and

f(x) =
M∑
k

αkfk(x), αk = nk/N,
M∑
k

αk = 1 (4.3)

This is, the estimator is Î = E[g(x)] when doing importance sampling with f(x) =
∑M

k αkfk(x).
We will next analyze the variance of balance heuristic MIS, or equivalently, the variance of

a mixture of distributions. Our interest is in obtaining the coefficients αk that give minimum
variance (example problem shown in Figure 4.1). Observe that these coefficients determine the
number of samples to be taken for each technique.

4.1 Optimal coefficients for an equal sample cost

Without loss of generality, we take the integral µ =
∫
g(x)f(x)dx =

∫
g(x) (

∑
αkfk(x)) dx =∑

αkµk, which is the expected value of g(x) according to pdf f(x), and for all M sampling
strategies µk =

∫
g(x)fk(x)dx = Ek[g(x)] is the expected value of g(x) when sampling from

10



f1(x) = x f2(x) = x2−x/π f3(x) = sin(x) f(x) = x(x2−π) sin(x)

Figure 4.1: In the 1D example of a product of three functions on domain 〈0, π〉, the count
of samples can be taken (top row) equally α1 = α2 = α3 = 1

3 , (bottom row) non-equally
α1 = 0.391, α2 = 0.520, α3 = 0.089, computed the supposed equal sample cost according to the
new technique, to decrease the variance and improve the efficiency of the estimate of V [f(x)]
by 138%. For illustrative purposes, 42 samples are shown in total.

fk(x). The variance can be computed as:

V [g(x)] =

∫
g(x)2f(x)dx− µ2 (4.4)

=

∫
g(x)2

(
M∑
k=1

αkfk(x)

)
dx− µ2

=

M∑
k=1

αk

∫
g(x)2fk(x)dx− µ2

=
M∑
k=1

αk
(
Vk[g(x)] + µ2

k

)
− µ2

=

M∑
k=1

αk
(
Vk[g(x)] + (µk − µ)2

)
The last equality comes from:

∑
αk(−2µkµ + µ2) = −2µ

∑
αkµk + µ2 = −µ2. Note that

Vk[g(x)] is the variance of g(x) with respect to fk(x) (samples are taken according to fk(x)).
Suppose we now want to compute the integral of the product of non-negative functions hk(x)

as I =
∫ ∏

hk(x)dx, for simplicity defined in the unit domain x ∈ 〈0, 1〉, using mixture function
f(x) =

∑
αkhk(x)/sk, where sk are the normalization factors sk =

∫
hk(x)dx. We transform

the integral into I =
∫ ∏

hk(x)∑
αkhk(x)/sk

(
∑
αkhk(x)/sk) dx and thus I = E

[ ∏
hk(x)∑

αkhk(x)/sk

]
. Observe

that g(x) =
∏
hk(x)∑
tkhk(x) in eq. 4.4. When simplifying the notation by tk = αk/sk and using

an auxiliary index j corresponding to k to distinguish between the sums, the variance of the

11



estimator is equal to:

V

[ ∏
hk(x)∑
tkhk(x)

]
=

M∑
j=1

∫ ( ∏
hk(x)∑

k tkhk(x)

)2

(tjhj(x)) dx− I2

=

∫ M∑
j=1

(
∏
hk(x))2

(
∑

k tkhk(x))2 (tjhj(x)) dx− I2

=

∫ ∏
h2
k(x)

(∑M
j=1 tjhj(x)

)
(
∑

k tkhk(x))2 dx− I2

=

∫ ∏
h2
k(x)∑

k tkhk(x)
dx− I2 (4.5)

Suppose we now want to find the tk that minimizes the variance (which will automatically give
us optimal αk as sk are fixed constants). We will use the Lagrange Multipliers method. For all
j from 1 to M :

∂
(
V
[ ∏

hk(x)∑
tkhk(x)

]
+ λ (

∑
k tksk − 1)

)
∂tj

= 0 (4.6)

subjected to the constraint
∑

k tksk = 1 we have

∂V
[ ∏

hk(x)∑
tkhk(x)

]
∂tj

=

∂

∫
(

∏
h2k(x)∑
tkhk(x))dx− I2

∂tj
(4.7)

=

∫ ∏
h2
k(x)

∂

∂tj

(
1∑

tkhk(x)

)
dx

= −
∫ (∏

h2
k(x)

)
hj(x)

(
∑
tkhk(x))2 dx

= −sj
∫ (∏

h2
k(x)

)
(hj(x)/sj)

(
∑
tkhk(x))2 dx

= −sj

(
Ej

[( ∏
hk(x)∑
tkhk(x)

)2
])

= −sj
(
Vj

[ ∏
hk(x)∑
tkhk(x)

]
+ µ2

j

)
,

where Vj is the variance and Ej the expected value when sampling according to pdf hj(x)/sj .
Thus

−sj
(
Vj

[ ∏
hk(x)∑
tkhk(x)

]
+ µ2

j

)
+ λsj = 0 (4.8)

and then for all j,

Vj

[ ∏
hk(x)∑
tkhk(x)

]
+ µ2

j = λ. (4.9)
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This means that the optimal combination of tk (and thus αk) is reached when all λ values are
equal. Using eq. 4.4 we can see that the minimum variance will be

V

[ ∏
hk(x)∑
tkhk(x)

]
=

∑
αk

(
Vk

[ ∏
hk(x)∑
tkhk(x)

]
+ µ2

k

)
− µ2 (4.10)

=
∑

αkλ− µ2 = λ− µ2

On the other hand, eq. 4.10 gives us the value of λ:

λ = V

[ ∏
hk(x)∑
tkhk(x)

]
+ µ2 = E

[( ∏
hk(x)∑
tkhk(x)

)2
]

(4.11)

We can easily check that when all hk functions are constant (being thus hk(x) = sk) except
one, say hm, for all j all expected values in eq. 4.9 are equal to Πks

2
k for the combination αm = 1

and αj = 0 for j 6= m, thus we just have to sample from the non-constant function, as should
be expected. Indeed, in this case the optimal variance is zero, as µ = Πksk and µ2 = λ = Πks

2
k.

Equation 4.9 implies that if all λ are equal, then for all pairs {hi(x), hj(x)} holds:∫ ( ∏
hk(x)∑
tkhk(x)

)2

(hi(x)/si − hj(x)/sj) dx = 0 (4.12)

This also tells us that in the trivial case all M functions hk are the same, and any weighting
scheme {αk} results in zero variance, as would be expected. Observe that, in general, the second
factor in the integral, (hi(x)/si− hj(x)/sj) can be positive or negative for different values of x,
thus in general eq. 4.12 does not imply the particular case of equal functions.

A strategy for approximating the optimal αk values in general would run along the following
lines. First, for each j, sample mj samples from hj(x)/sj . For each j, with the mj samples,
compute eq. 4.9 for different combinations of αk values, using the estimator eq. 6.8. Observe
that for each j you need to take the mj samples only once and store them to test a possible
reweighting scheme with any {αk},

∑
αk = 1. For each different combination of αk values, the

values of eq. 4.9 for all j are computed. The optimal αk values would be those that make all
these values the most similar. This strategy could be organized by taking batches of samples
to improve on the {αk} gradually.

4.2 Optimal coefficients for non-equal sample cost

The optimal αk values considered before do not take into account the possibility of different
costs to sample for each pdf hk(x)/sk. Let us now consider this cost, and let ck be this cost for
one sample. The average cost per sample is

∑
ckαk =

∑
ckαksk/sk =

∑
cktksk. Thus, taking

into account the cost of sampling, the optimal αk values will come from minimizing the inverse
of efficiency, the cost of the variance times, extending eq. 4.5(∑

cktksk

)
V

[ ∏
hk(x)∑
tkhk(x)

]
(4.13)
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subjected to the constraint
∑

k tksk = 1. Using the Lagrange Multipliers method and auxiliary
index j again, we get:

∂
(

(
∑
cktksk)V

[ ∏
hk(x)∑

k tkhk(x)

]
+ λ (

∑
tksk − 1)

)
∂tj

= 0. (4.14)

After derivation and factoring out normalization constants sj , we obtain:

cjV

[ ∏
hk(x)∑
tkhk(x)

]
−
(∑

cktksk

)(
Vj

[ ∏
hk(x)∑
tkhk(x)

]
+ µ2

j

)
= −λ. (4.15)

which can also be written as

cjV

[ ∏
hk(x)∑ αk
sk
hk(x)

]
−
(∑

ckαk

)
Ej

( ∏
hk(x)∑ αk
sk
hk(x)

)2
 = −λ (4.16)

To minimize the variance in the given cost budget, and thus maximize the efficiency, for all j
the quantity λ in eq. 4.16 has to be the same. By multiplying eq. 4.16 by αj summing over j,
we can obtain the value of λ = (

∑
k ckαk)µ

2.
Observe that eq. 4.16 would express the same condition as in eq. 4.9 when all costs ck = c

are equal, as then the first term on the left side of eq. 4.16 does not depend on k, and
∑

k ckαk
reduces to c. Observe also that the value of µ is independent of the αk’s, and that the expected
values appearing in eq. 4.16 can be estimated in the same way as before for eq. 4.9, by sampling
mj samples for all j from hj(x)/sj pdf, while µ2 can be estimated from estimating the µk =

Ek

[ ∏
hk(x)∑
tkhk(x)

]
and then from µ2 = (

∑
k µk)

2.

Now we present a strategy for approximating the optimal αk coefficients. Assume sampling
in B batches with an initial batch of N0 samples, so mj,0 = N0/M (assuming batch b with Nb

samples
∑

B Nb = N for the total number of samples N). The sampling procedure for the b-th
batch would be expressed by the Algorithm 1.

The batched procedure has time complexity for finding the optimal combination O(N) due
to the inner loop in lines 5 to 12, which is computationally demanding; however, we find the
optimal solution for the number of samples and the minimal variance of the estimate.

4.3 Heuristic for weights

The question now arises whether without reverting to the time consuming batching procedure
presented in Algorithm 1 there is some heuristic that would directly approximate the optimal
αk values. A hint is given by the equation 3.27. Thus we will consider the αk values inversely
proportional to the variances of the estimators taking as pdf each hk(x)/sk in turn, respectively,
i.e.,

αk =
H({Vk})
MVk

, (4.17)

where Vk is from equation 3.9 computed as

Vk = sk

∫ ∏
i 6=k

hi(x)

2

hk(x)dx− I2 (4.18)
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Algorithm 1: The sampling algorithm with optimal distribution of samples from M
sampling strategies taking N samples in total in B batches, assuming U weighting
combinations.

for b← 1 to B do1

In the b-th batch for each j ∈ 〈1,M〉 select new mj,b samples according to the2

distribution hj(x)/sj .

Compute total number of samples m′j =
∑b

j=1mj,b taken for each hj(x).3

Select U weighting combinations indexed by l with values {αk,l} so it gives the linear4

combination
∑M

k=1 αk,l = 1 so that αk,l > 0, and set tk,l = αk,l/sk.
for l← 1 to U do5

For l-th weighting combination6

for j ← 1 to M do7

Compute µj,l = Ej

[ ∏
hk(x)∑

tk,lhk(x)

]
and νj,l = Ej

[( ∏
hk(x)∑

tk,lhk(x)

)2
]
, using all

8

samples m′j already taken for each hj(x) for the previous sampling batches
with estimators eq. 6.6 and eq. 6.8. (i.e. in eq. 6.6 and eq. 6.8

g(x) =
∏
hk(x)∑

tk,lhk(x) and N = m′j).

Compute µ2
l =

(∑M
j=1 µj,l

)2
.9

for j ← 1 to M do10

Compute for the j-th sampling strategy and the l-th weighting combination11

the left side of eq. 4.16, let us call it Λj,l.

Normalize the vector λj,l =
Λj,l∑
j Λj,l12

Select the index l0 such that the normalized vector given by λj,l0 has less distance to13

the uniform distribution. For example, select the vector with maximum entropy. The
best combination is the combination corresponding to index l0, i.e. the coefficients
αk,l0 .
Determine the number of samples Nb+1 to be sampled in the next batch (e.g.14

uniformly so Nb+1 ≈ N/B).
Compute the number of samples mj,b+1 for the next batch of Nb+1 samples according15

to αk,l0 considering the number of already taken samples for each hj(x) for all

batches of samples already taken:
∑M

j=1mj,b+1 = Nb+1.
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Observe from eq. 4.17 that the less the variance of a technique is, the more we sample from
that technique, remember from the definition 4.3, that the count of the samples is proportional
to αk. Trivially, for any pair {k, j}, Vk 6= 0, Vj 6= 0, we get αk/αj = Vk/Vj . Thus, when all
variances Vk are equal so are all the αk.

Let us examine the limiting case, when the variance Vk is null. For this to happen, all
functions hj 6=k(x) have to be constant, as doing importance sampling then with pdf hk(x)/sk
the integrand will be constant, and the variance Vk will be null. In that case, no other variance
can be null (excluding the trivial case where hk(x) is also constant), and, taking limits in eq. 4.17
for Vk → 0, αk = 1, αj 6=k = 0.

The other limiting case, when some variance(s) Vm are very big with respect to the other
variances, taking limits in eq. 4.17 for Vm →∞, we obtain αm = 0.

We can include the cost in a batching strategy to approximate the optimal αk coefficients.
Suppose we include the cost ck into equation for sampling efficiency as:

αk ∝
1

ck

(
sk

∫ (∏
i 6=k hi(x)

)2
hk(x)dx− I2

) (4.19)

then we extend similarly the formulae for weighting coefficients:

αk =
H({ckVk})
MckVk

(4.20)

Indeed, the variances are not usually known in advance, so they have to be estimated using
some batch of samples.

Discussion. Lu et al. [LPG13], using also the fact that balance heuristic MIS is importance
sampling with a mixture of densities, approximate the variance for the product of two functions
representing BRDF and an environment map, using a second order Taylor expansion around
α = 1/2. Thus the farther from this α = 1/2, the worse the approximation. On the other hand,
we have given here a closed formula for the variance of the product of any number of functions,
a closed formula for its optimum, a procedure for approximating the optimal α coefficients that
is valid for any range of α values, and heuristic formulae for the optimal α values.

4.4 Application to illumination by an environment map

Applying the results of the previous sections to environment map illumination computation, the
chosen weights for sampling the environment map and BRDF respectively, would be, considering
eqs. 3.21 and 3.22:

α1 ∝
1

V1
=

1

R∗
∫

(fr(x, ωi, ωo))2(ωi.~n)2R(ωi)dω − (L(x, ωo))2

α2 ∝
1

V2
=

1

a(x, ωo)
∫

(R(ωi))2fr(x, ωi, ωo).(ωi.~n)dω − (L(x, ωo))2

i.e. α1 = H({V1,V2})
2V1

and α2 = H({V1,V2})
2V2

and taking into account the cost of sampling:

α1 = H({c1V1,c2V2})
2c1V1

, α2 = H({c1V1,c2V2})
2c2V2
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5 Results

Without lack of generality, we tested the proposed adaptive sampling algorithm on 1D and 2D
functions. We keep our analysis as simple as possible and restrict the numerical evaluation
to the implementation of environment map illumination even, although MIS has been used in
hundreds of applications in published papers for more involved problems, which are beyond the
scope of this paper.

5.1 Domain 1D

For the 1D domain, we show an example with the product of three functions that is shown in
Figure 4.1. The efficiency improvement for equal costs of the three sampling strategies when
taking 1000 samples, where 200 samples were pilot samples, was +29%, in comparison with equal
count sampling from all three strategies. The theoretical analysis is presented in Appendix C.

5.2 Domain 2D

For the 2D domain, we prepared two tests showing the results of our approach on the problem
of illumination by an environment map. The first test is an analytical derivation of formulas in
Mathematica, and corresponds to the illumination of an object with the Lafortune-Phong BRDF
model with an environment map simplified to the function cos θ. It is described in Appendix D.
The improvement in efficiency is by +138% compared to the equally distributed samples for the
same cost of sampling from both strategies. For uneven costs of sampling from both strategies,
where the ratio of costs was measured from C++ implementation of the algorithm as 1 to 10,
the improvement in efficiency is +1462%.

(a) (b) (c) (d)

Figure 5.1: Per pixel sampling of an object covered by spatially varying BRDF (a) rendered
image with 200 samples, (b) optimal selection of samples found by a combinatorial search in
O(N2) time, (c) our approximation to the exact values computed in O(1) time, (d) the previous
method of Lu et al. [2013]. The distribution of samples is shown: deep blue color indicates
sampling only from the environment map, red color only from BRDF.

The second test in the 2D domain was implemented in C++ for real environment map data
and a broad range of BRDF values. The sampling is computed independently for each pixel
with a different set of random values. The texture on an object is computed pixel by pixel and
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is finally rendered by the OpenGL application. To demonstrate the results on a wide range of
surface reflectances, we set up a scene with spatially varying BRDF properties to show many
results in a single image. Using a single BRDF over a complex shape is much more restrictive
and depicts a single situation even if surface normal is changing. We show an example of a
computed image on a more complex 3D shape in Figure 5.1. Our algorithm also works in all
the cases including complex 3D shapes, as samples for all the pixels are taken independently.

Our extended scene setup consists of a single rectangle or 3D objects that is put into the
middle of a scene represented by an environment map. We used three environment maps with
different ratios of variance and squared mean, which we call City hall, (low σ2/µ2), Grace
Cathedral (moderate σ2/µ2), St’Peters Dome (high σ2/µ2). We have used the physically cor-
rected Phong-Lafortune BRDF model [LW94b] fr(ωo, ωi) = ρd/π + ρs

n+2
2π . cosn(α). We have

been changing the exponent and the ratio between diffuse and specular albedo along the rect-
angle, while the albedo of the BRDF is set to constant. We haven chosen this BRDF model
since it allows for analytical importance sampling. The diffuse albedo ρd is interpolated in
axis y on a rectangle by function ρd(y) = (1 − y)2 for range y ∈ 〈0, 1〉, the specular albedo is
ρs = 1 − ρd (vertically, closest to the viewer, bottom side of image ρd = 0 and the top side of
image ρd = 1 in Figure 5.2(a)). To depict interesting cases, we use mapping of the specular
exponent of the Lafortune-Phong model shown in Figure 5.2(b) for x ∈ 〈0, 1〉 using this formula
n(x) = −1− 0.111211/(0.1.x0.2 − 0.101101) that gives range 〈0.1, 100〉. The Figure 5.2 shows a
visualization of varying the properties of Phong’s model with pseudocolor used for visualization,
including the computed variance BRDF along the rectangle. Pseudo-color based on a rainbow is
used for visualization, and the values are standardized between zero (blue) and one (red). The
Figure 5.3 shows the converged rendered textures for the same rectangle with varying BRDF
together, as illuminated by three environment maps in Figure 5.4. In addition, on the right
side we also show images and a texture atlas for a more complex object, Phlegmatic Dragon,
illuminated by St’Peters Dome, as shown in Figure 5.1.

ρd ∈ 〈0, 1〉 ρs ∈ 〈0, 1〉 n ∈ 〈10, 100〉 V [fr(xy, ωo)] ∈ 〈0, 6
10〉

Figure 5.2: Lafortune-Phong BRDF model fr(ωo, ωi) = ρd/π+ ρs
n+2
2π . cosn(α) spatially varying

(left) diffuse albedo ρd in range 〈0, 1〉, (middle left) specular albedo ρs (albedo ρd + ρs = 1),
(middle right) specular exponent n in range 〈0.1, 100〉, (right) variance of this spatially varying
BRDF example computed for 10,000 samples shown in range 〈0, 6

10〉 when sampled from a
constant environment map.

We have tested the methods for moderate number of samples n = 200 to show visible
differences and evaluated RMSE against the reference. The properties of three used environment
maps are given in Table 5.1. We have normalized the power of all environment maps (the power
after normalization is one) to make the results from rendered images mutually comparable. We
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Figure 5.3: Converged results for texture on rectangle with varying BRDF and environment
map for rectangle scene (left) illuminated by City hall, (middle left) by Grace Cathedral, (middle
right) by St’Peters Dome, (right) texture on Phlegmatic dragon illuminated St’Peters Dome.

Figure 5.4: Showing the texture positioned in environment map, rendered by our adaptive
sampling algorithm for 200 samples, (left) rectangle illuminated by City hall (middle left),
rectangle illuminated Grace Cathedral, (middle right) rectangle illuminated by St’Peters Dome,
(right) Phlegmatic dragon illuminated by St’Peters Dome.

also show the variances including the one of north (upper) hemisphere as the normal of the
rectangle’s surface is oriented towards this part of environment map.

The numerical results as RMSE against the converged reference images are summarized in
Table 5.2. For our algorithm we set the number of samples in the pilot stage to 20%, where
20 (10%) samples were sampled according to BRDF and another 20 samples (10%) according
to an environment map in the pilot stage of sampling. The computation after taking the pilot
sampling was then organized in the next 4 sampling stages, taking 40 samples in each stage.
Before each stage, the number of samples for this stage was computed using eq. 4.20 (for the
same cost of sampling from both strategies so eq. 4.17) projected it to the end of the next
sampling stage, taking into consideration all the history of sampling, including the pilot stage.

City hall Grace St’Peters

Cathedral Dome

σ2
S/µ

2
S 0.016 0.219 1.438

σ2
Ω/µ

2
Ω 1.613 26.159 154.727

Table 5.1: Properties of three environment maps. The symbol S stands for the whole sphere,
symbol Ω for upper hemisphere when computed value σ2/µ2.

Although our algorithm selects the number of samples according to a heuristic, it decreases
the variance both against standard MIS, taking an equal count of samples (α1 = α2 = 0.5), and
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City hall Grace Cathedral St’Peters Dome Phlegmatic Dragon

(top row) Optimal sampling pattern achieved from variance analysis for all combinations.

(middle row) Sampling pattern achieved by our heuristic algorithm.

(bottom row) Sampling pattern achieved by algorithm Lu et al. 2011.

Figure 5.5: The sampling patterns produced by adaptive sampling algorithms for four data sets,
samples distribution between environment map (blue) and BRDF (red). (Top row) statistically
optimal sampling pattern for 200 samples, (middle row) sampling pattern found by our heuristic
in Section 4.3, (bottom row) sampling pattern by the method of Lu et al. [2013]. Columns: (left)
rectangle texture illuminated by City hall, (middle left) rectangle texture illuminated by Grace
Cathedral, (middle right) rectangle texture illuminated St’Peters Dome, (right) Phlegmatic
dragon illuminated by St’Peters Dome, with rendered images corresponding to Figure 5.1.

also against the recent paper by Lu et al. [LPG13], except the last setting. The optimal scheme
was considered as taking an equal number of samples in the pilot stage of sampling, where in
the pilot stage of sampling we took 20% (40) of all samples. Then by the combinatorial search
the best possible weighting scheme was found by minimizing the estimated variance from all the
160 combinations at the end of sampling, which corresponds to eq. 4.16 (so in our case for the
same cost of sampling eq. 4.11). This explains why in the case of St’Peters Dome and sampling
according to environment map the variance is even lower (no samples from the BRDF.cos(θ)
were taken). However, any adaptive sampling algorithm has to take at least some samples from
all sampled functions before it starts prioritize some sampling strategy.
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City Grace St’Peters St’Peters

hall Cath. Dome Dome

Phlegmatic

rectangle rectangle rectangle Dragon

Sampling scheme RMSE×1000

Environment map 14.79 16.26 8.70 9.03

fr(x, ωv) cos(θ) 7.87 45.42 88.04 53.64

MIS50-50 [VG95] 7.37 24.26 12.03 11.36

[LPG13] 7.25 25.32 13.86 13.14

Our scheme (eq. 4.17) 7.20 20.55 11.65 11.48

Optimal scheme (eq. 4.9) 7.12 21.15 11.25 12.69

Table 5.2: Numerical results for four rendered scenarios using two geometric data sets (rectangle
and Phlegmatic Dragon 3D model) and three environment maps, the cost of sampling from both
strategies is the same. The error of computed images for six sampling schemes for taking 200
samples are shown. Values of RMSE×1000 computed from RGB across the whole image against
the reference converged image for each sampling scheme is reported (the lower value of RMSE
the better sampling scheme).

We can observe in the images in Figure 5.5 that it is difficult to predict how to reach the
optimal distribution of samples in advance. Our technique using not only the samples in the
pilot stage but all samples taken up to the beginning of some sampling batch attempts to
optimize the count of samples to the end of sampling. In this way, it closely approaches the
optimal sampling distribution between strategies that has the lowest estimated variance.

The computation costs for standard MIS algorithm with equal counts and the proposed
adaptive sampling MIS algorithm are almost the same. This is because the computation of
variance and the mean in the new sampling scheme, and computing heuristically by eq. 4.20
how many samples there will be taken in the next stage of sampling presents only a negligible
overhead in the whole algorithm, in comparison with the cost of sampling. This cost (in seconds)
of sampling from BRDF (fr(x, ωv) cos(θ)) and sampling from the environment map was almost
equal in our tests (costBRDF = 0.8costEM ), as we stored the precomputed lights to an array
in preprocessing and randomized their selection during sampling. In this way, we avoided
a double binary search (required for importance sampling by inverse transform method) and
decreased the cost of sampling from the environment map. An equal cost of sampling from both
strategies is the worst case for our scheme, but we still achieve an improvement. When a binary
search for inverse transform method has to be done, in our implementation the cost of sampling
according to BRDF is about five times less than the cost of sampling from environment map
(costBRDF = 0.21costEM ), the efficiency improvements were then even higher.

Discussion. Other adaptive sampling schemes with MIS are possible, but our proposed
method uses almost no memory and almost no computational overhead, and in addition it is
accurate with respect to the theory presented in the previous section. The potential improve-
ment in sampling efficiency for another application of a sampling scheme for the product of
functions is therefore much higher for those sampling schemes where the sampling costs for
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the functions in product differ. Different sampling costs can be included in a relatively simple
way, as we have shown. The increase in the number of samples can even improve results of our
technique as then the reliability of variance estimate is higher.

5.3 Limitations

We have not included the visibility in the variance analysis of the reflectance equation, for
given example of environment map illumination, but it can be seen as another function in the
product. The problem is that importance sampling can be done according to the visibility
only using general methods such as Metropolis. This could be extremely costly: it may not
pay off to sample according to the visibility in dependence on the sampling cost. Our analysis
gives a lower bound of variance assuming a full visibility (so, trivially, the computed variance
of visibility function is zero),

This technique requires an estimate of the number of samples, and also an estimate of the
variances given by eqs. 4.11 or 4.16. This is computationally only a small overhead, but a
reliable estimate requires more than just ten or twenty samples. This is the same as in the work
of Lu et al. [LPG13], where the minimum number of samples in the pilot stage is 64, or in any
other adaptive techniques [MPS12, CMMR12, DGMR07].

We show in Appendix E that the samples need not be stored to the memory for reweight-
ing. The evaluation of variances and estimated mean can be organized by online and robust
computation [Knu97] of the mean and variance, so that the results of reweighting the stored
data are the same as for online computation.
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6 Conclusion and future work

We have analyzed the Multiple Importance Sampling (MIS) estimator with balance heuristic.
Using the fact that balance heuristic MIS is importance sampling with a mixture of densities,
and considering the particular case of interest in rendering the integral of a product of functions,
we have given for its MIS estimator a closed formula for the variance, a closed formula for the
optimal weights, i.e., the distribution of sampling that optimizes the variance, a batch procedure
to obtain them and, finally, a heuristic formula to approximate the optimal weights directly. We
have also considered the cost of sampling in our formulation, and in this case we optimize the
efficiency of the estimator. We have demonstrated our results with experiments on 1D functions
and 2D functions, where as the application example we have taken the direct illumination of
an object with spatially varying BRDF lit by an environment map. We have shown that the
improvement in the sampling efficiency can be from negligible for some function settings to very
high, reaching a factor of five to ten for the same running time compared to previous algorithms.

In future we plan to test our results in other scenarios, e.g. illumination by VPLs for a
given random walk for many lights methods. In general, the scheme is easily applicable to
many existing algorithms that use MIS and require a moderate to high number of samples.
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[DKH+13] C. Dachsbacher, J. Křivánek, M. Hašan, A. Arbree, B. Walter, and J. Novák. Scal-
able Realistic Rendering with Many-Light Methods. Computer Graphics Forum,
32(1), 2013.

[Dur11] F. Durand. A Frequency Analysis of Monte-Carlo and other Numerical Integration
Schemes. Technical Report MIT-CSAIL-TR-2011-052, Massachusetts Institute of
Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge,
MA 02139 USA, December 2011.

[GD59] F. A. Graybillk and R. Deal. Combining Unbiased Estimators. Biometrics, 15:543–
550, Dec 1959.

[HCJ13] R. Habel, P. H. Christensen, and W. Jarosz. Photon Beam Diffusion: A Hybrid
Monte Carlo Method for Subsurface Scattering. Computer Graphics Forum (Pro-
ceedings of EGSR 2013), 32(4):27–37, June 2013.

25



[Hes88] T. C. Hesterberg. Advances in Importance Sampling. PhD thesis, Stanford Univer-
sity, 1988.

[Kaj86] J. T. Kajiya. The Rendering Equation. In D. C. Evans and R. J. Athay, editors,
Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 143–150, Au-
gust 1986.

[Knu97] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[KW86] M. Kalos and P. Whitlock. Monte Carlo Methods: Basics. Monte Carlo Methods.
J. Wiley & Sons, 1986.

[LPG13] H. Lu, R. Pacanowski, and X. Granier. Second-Order Approximation for Vari-
ance Reduction in Multiple Importance Sampling. Computer Graphics Forum,
32(7):131–136, 2013.

[LW94a] E. P. Lafortune and Y. D. Willems. Using the Modified Phong BRDF for Physically
Based Rendering. Technical Report CW197, Department of Computer Science,
Katholieke Universiteit Leuven, Leuven, Belgium, November 1994.

[LW94b] E. P. Lafortune and Y. D. Willems. Using the Modified Phong Reflectance Model for
Physically Based Rendering. Technical Report report CW197, Dept. of Computer
Science, K.U.Leuven, 1994.

[MPS12] J.-M. Marin, P. Pudlo, and M. Sedki. Consistency of the Adaptive Multiple Im-
portance Sampling. Preprint arXiv:1211.2548, November 2012.

[NRH+77] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geo-
metric Considerations and Nomenclature for Reflectance. Monograph 161, National
Bureau of Standards (US), October 1977.

[OZ00] A. Owen and Y. Zhou. Safe and Effective Importance Sampling. Journal of the
American Statistical Association, 95:135–143, 2000.

[Ram09] R. Ramamoorthi. Precomputation-Based Rendering. Found. Trends. Comput.
Graph. Vis., 3(4):281–369, April 2009.

[RAMN12] R. Ramamoorthi, J. Anderson, M. Meyer, and D. Nowrouzezahrai. A Theory of
Monte Carlo Visibility Sampling. ACM Trans. Graph., 31(5):121:1–121:16, Septem-
ber 2012.

[RH01] R. Ramamoorthi and P. Hanrahan. A Signal-Processing Framework for Inverse
Rendering. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’01, pages 117–128, New York, NY, USA, 2001.
ACM.

[RH04] R. Ramamoorthi and P. Hanrahan. A Signal-Processing Framework for Reflection.
ACM Trans. Graph., 23(4):1004–1042, October 2004.

26



[RK08] R. Rubinstein and D. Kroese. Simulation and the Monte Carlo Method. Wiley
Series in Probability and Statistics. Wiley, 2008.

[RMB07] R. Ramamoorthi, D. Mahajan, and P. Belhumeur. A First-order Analysis of Light-
ing, Shading, and Shadows. ACM Trans. Graph., 26(1), January 2007.

[SK13] K. Subr and J. Kautz. Fourier Analysis of Stochastic Sampling Strategies for As-
sessing Bias and Variance in Integration. ACM Trans. Graph., 32(4):128:1–128:12,
July 2013.

[TOS10] Y. Tokuyoshi, S. Ogaki, and S. Sebastian. Final Gathering Using Adaptive Multiple
Importance Sampling. In ACM SIGGRAPH ASIA 2010 Posters, SA ’10, pages
47:1–47:1, New York, NY, USA, 2010. ACM.

[vA11] D. van Antwerpen. Improving SIMD Efficiency for Parallel Monte Carlo Light
Transport on the GPU. In Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics, HPG ’11, pages 41–50, New York, NY, USA, 2011.
ACM.

[Vea97] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis,
Stanford University, 1997.

[VG94] E. Veach and L. J. Guibas. Bidirectional Estimators for Light Transport. In Pro-
ceedings of the 5th Eurographics Workshop on Rendering, pages 147–162, 1994.

[VG95] E. Veach and L. J. Guibas. Optimally Combining Sampling Techniques for Monte
Carlo Rendering. In Proceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’95, pages 419–428, New York, NY,
USA, 1995. ACM.

27



Appendix A - Recapitulation of basic notions of random variable
and estimators

We recall here the basic statistics and Monte Carlo estimation concepts that are needed in this
paper. The reader can consult the classic references on Monte Carlo [RK08, KW86].

Random Variable. Given a random variable X over a domain Ω, distributed according
to probability distribution function pdf f(X), its mean or expected value E[X] is the integral∫

Ω xf(x)dx. The expected value of a function g(X) of random variable X (which in turn is
a random variable) is E[g(X)] =

∫
Ω g(x)f(x)dx. The expected value of a sum of random

variables is the sum of expected values, and the product with a constant k is the constant times
the expected value, i.e., E[k

∑
gi(Xi)] = k

∑
E[gi(Xi)]. We will use below the particular case

when k = 1/N , and all random variables are identically distributed. Then we have:

E[
1

N

N∑
1

g(Xi)] =
1

N

N∑
1

E [g(Xi)]

=
1

N
NE [g(X)] = E [g(X)] (6.1)

Variance. The variance V [X] of distribution X is defined as

V [X] = E
[
(X − E[X])2

]
= E[X2]− (E[X])2

=

∫
Ω
x2f(x)dx− (E[X])2 . (6.2)

In general, the variance V [g(X)] of function g(X) is defined as

V [g(X)] = E
[
(g(X)− E [g(X)])2

]
= E

[
g(X)2

]
− (E [g(X)])2

=

∫
Ω
g(x)2f(x)dx− (E [g(X)])2 (6.3)

The variance of a sum of independent random variables is the sum of the variances, and
the product with a constant k is the squared constant times the variance, i.e., V [k

∑
gi(Xi)] =

k2
∑
V [gi(Xi)]. Thus, if all random variables are independent and identically distributed, then:

V

[
1

N

N∑
1

g(Xi)

]
=

1

N2

N∑
1

V [g(Xi)] =
1

N2
NV [g(X)]

=
1

N
V [g(X)] (6.4)

An estimator of a quantity is a random variable such that its expected value is equal to
that the quantity. A biased estimator is when the expected value differs by a bias from this
quantity. An unbiased estimation of the mean value E[g(X)] is obtained by drawing N samples
according to X:

E [g(X)] ≈ 1

N

N∑
1

g(xi) (6.5)
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Observe that the estimator is just the average of the sum of N random variables identically
distributed:

Ê[g(X)] =
1

N

N∑
1

g(Xi). (6.6)

Clearly E[ ̂E [g(X)]] = E [g(X)]. We use a ”hat” symbol to differentiate the estimator from
the quantity being estimated. In the definition of successive estimators we will use the samples
directly, instead of the random variables that they are sampled from.

An unbiased estimator of the variance V [g(X)] is as follows:

̂V [g(X)] =

∑N
i=1

(
g(xi)−

(∑N
i=1 g(xi)

)
/N
)2

N − 1
(6.7)

But observe that an estimator for E[g(X)2] is

̂E [g2(X)] =
1

N

N∑
i=1

g2(xi) (6.8)

Appendix B - BRDF properties

BRDF (i.e. the bidirectional reflectance distribution function) is defined by Nicodemus [NRH+77]
by means of the reflectance equation:

fr(x, ωo, ωi) =
dL(x→ ωo)

L(x← ωi). cos(θi)dωi
=

dL(x→ ωo)

L(x← ωi).(ωi.~n)dωi
(6.9)

In this definition it fulfills Helmholtz reciprocity, given as: fr(x, ωo, ωi) = fr(x, ωi, ωo)

Observe that fr(x, ωo, ωi) is not in principle a probability density function (as it does not
integrate to 1 with incoming directions ωi, but see below), it is unitless (i.e. unit is [sr−1], but
this is still unitless as a steradian is unitless). To obtain a probability density function (pdf)
from the BRDF, it should be redefined using the reflectance equation. We can define it in the
following way, for fixed ωo and integrating over incoming directions ωi.

pdf(x, ωo, ωi) =
1

a(x, ωo)
.fr(x, ωi, ωo).(ωi.~n), (6.10)

where albedo a(x, ωo) for fixed outgoing direction ωo is defined as:

a(x, ωo) =

∫
Ω
fr(x, ωi, ωo).(ωi.~n)dωi (6.11)

And then: ∫
Ω

pdf(x, ωo, ωi)dωi =
1

a(x, ωo)

∫
Ω
fr(x, ωi, ωo).(ωi.~n)dωi = 1 (6.12)
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Appendix C - One-dimensional example

Suppose we want to solve the integral I =
∫ π

0 x
(
x2 − x

π

)
sin(x)dx = 10.2884 by MIS sampling

on functions x, (x2 − x
π ) and sin(x) respectively. We first find the normalization constants:∫ π

0 xdx = π2/2,
∫ π

0

(
x2 − x

π

)
dx = 8.764,

∫ π
0 sin(x)dx = 2. Then we find the three variances

when doing importance sampling with all three pdfs, respectively:

V1 = π2/2

∫ π

0
x
(
x2 − x

π

)2
sin2(x)dx− I2 = 29.7928

V2 = 8.764

∫ π

0
x2
(
x2 − x

π

)
sin2(x)dx− I2 = 23.4828

V3 = 2

∫ π

0
x2
(
x2 − x

π

)2
sin(x)dx− I2 = 123.896

Thus, according to eq. 4.18 and applying eq. 3.29, with all ni = 1, we get, withH({V1, V2, V3}) =
35.6206,

α1 =
H({V1, V2, V3})

3V1
= 0.398538

α2 =
H({V1, V2, V3})

3V2
= 0.505627

α3 =
H({V1, V2, V3})

3V3
= 0.0958351

Remember now from eq. 4.5 that the variance of MIS is given by the following expression:

V (α1, α2, α3) =

∫ π

0

x2
(
x2 − x

π

)2
sin2(x)

2α1x
π2 + α2

8.764

(
x2 − x

π

)
+ 1

2α3 sin(x)
dx− I2

Substituting the α values found above, we have that V (0.398538, 0.505627, 0.0958351) =
25.803. On the other hand, V (1/3, 1/3, 1/3) = 33.4113, and there is a gain of 30%. By iterating
over all possible αi values with step 0.01 we can find that the minimum variance value is
23.247, very near to our heuristically computed variance 25.803. We can check for heuristically
computed weighting coefficients {0.398538, 0.505627, 0.0958351} above the value of eq. 4.11:

∫ π

0

x2
(
x2 − x

π

)2
sin2(x)

2α1x
π2 + α2

8.764

(
x2 − x

π

)
+ 1

2α3 sin(x)
dx = 131.654

and the three variances according to eq. 4.9:
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∫ π

0

x2
(
x2 − x

π

)2
sin2(x)(

2α1x
π2 + α2

8.764

(
x2 − x

π

)
+ 1

2α3 sin(x)
)2 2x

π2
dx = 128.466

∫ π

0

x2
(
x2 − x

π

)2
sin2(x)(

2α1x
π2 + α2

8.764

(
x2 − x

π

)
+ 1

2α3 sin(x)
)2 8.764

(
x2 − x

π

)
dx = 137.427

∫ π

0

x2
(
x2 − x

π

)2
sin2(x)(

2α1x
π2 + α2

8.764

(
x2 − x

π

)
+ 1

2α3 sin(x)
)2 1

2
sin(x)dx = 114.445

Remember that for the optimal case all four values should be equal. We can see that the
discrepancy is relatively small for the heuristically obtained α values. On the other hand, for
α values {1/3, 1/3, 1/3} the integrals evaluate to 139.262 and {143.513, 162.005, 112.267} with
a bigger discrepancy.

Let us now introduce the sampling costs. Suppose that the relative costs are c1 = 1, c2 =
6.24, c3 = 3.28. These costs are taken from measurement of an implementation in C++. Using
eq. 4.20, the new optimal values of weighting coefficients are found to be {0.783361, 0.159209, 0.0574306}.
Although the variance now increases a little V (0.783361, 0.159209, 0.0574306) = 28.9247, the
relative efficiency increases from 1.2947 for equal sampling costs to 2.06141, when taking into
account the different sampling costs. This presents doubling of sampling efficiency with a neg-
ligible computation overhead.

Appendix D - 2D analytical example with Lafortune-Phong BRDF
model

Let us consider here the formula for the physically-based variant of the Phong model presented
by Lafortune [LW94a]. We assume that the whole lobe is above the surface. For simplicity, we
will assume the case when the outgoing direction ωo is along the surface normal.

fr(ωo, ωi) = ρd/π + ρs
n+ 2

2π
cosn(θ) (6.13)

Let us also consider an environment map given by R(ω) = R. cosk(θ), where R and k are
constants. As dω = sinθdθdφ the outgoing radiance L(ωo) is then given by the integral:

L(ωo) = R

∫ 2π

0

∫ π/2

0

(
ρd/π + ρs

n+ 2

2π
cosn(θ)

)
cos θ cosk(θ) sin θdθdφ (6.14)

and integrating over φ

L(ωo) = 2πR

∫ π/2

0

(
ρd/π + ρs

n+ 2

2π
cosn(θ)

)
cosk(θ) cos θ sin θdθ (6.15)

Changing variables x = cos θ (so dx = − sin θdθ) we get by substition:

L(ωo) = 2πR

∫ 1

0

((
ρd/π + ρs

n+ 2

2π
xn
)
x

)
xkdx (6.16)
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We thus have the integral of the product h1(x)h2(x), where h1(x) corresponds to the BRDF
times cosine

h1(x) =

(
ρd/π + ρs

n+ 2

2π
xn
)
x,

and h2(x) = xk is the environment map.
We can then find the optimal combination and the efficiency with respect to equal coeffi-

cients. For typical values, n = 5, ρd = ρs = 0.5, the relative efficiency for the equal sampling
cost is 2.38, with optimal coefficients α1 = 0.89, α2 = 0.11. If we suppose the environment map
is very costly to sample, for example c1 = 1, c2 = 10, then the relative efficiency is 15.62, with
optimal coefficients α1 = 0.99, α2 = 0.01.

Solving the integral, we get then value for outgoing radiance equal to:

L(ωo) = 2πR

∫ 1

0

(
(ρd/π + ρs

n+ 2

2π
xn)x

)
xkdx

= R

[(
2ρd

xk+2

k + 2
+ ρs(n+ 2)

xn+k+2

n+ k + 2

)]1

0

= R

(
2ρd
k + 2

+ ρs
n+ 2

n+ k + 2

)
(6.17)

This is useful for debuging of a real implementation, when we compare the results obtained by
numerical integration against the analytically computed values for arbitrary ρd, ρs, n, and k.

Appendix E - Online computation

Instead of using the two-pass algorithm, the online algorithm is often used for computing both
the sample and the population variance, e.g. Knuth’s one-line algorithm [Knu97] for the sample
variance:

V [X] ≈

∑N
i=1

(
g(xi)− 1

N

∑N
i=1 g(xi)

)2

N − 1
(6.18)

=
1

N − 1

N∑
i=1

g2(xi)−
N

N − 1

(
1

N

N∑
i=1

g(xi)

)2

(6.19)

The algorithm for the unbiased estimator of the sample variance and mean for function g(x)
given random samples xi is then as follows:

i = 0;
mean = 0;
M2 = 0;
for each g(xi) in data:
i = i+ 1;
delta = g(xi)−mean;
mean = mean+ delta/i;
M2 = M2 + delta.(g(xi)−mean);
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end
// It returns the sample variance and the mean value
return {variance = M2/(i− 1), mean}

On the practical side, it is easy to compute both the mean and the variance incrementally
with almost zero storage. This is also suited for a stream-based computational model archi-
tecture such as GPUs. It is necessary to use this variance computation algorithm in order
to make the algorithm for estimating the integral efficient. Its computation is trivial, since:
V [X] = E[X2]− E[X]2, so computing E[X2] = V [X] + E[X]2. Further, multiplication by fac-
tor N−1

N is required to get the unbiased estimate of E[X2] in the form of eq. 6.8, when the online
one pass algorithm above is used to compute population variance instead of sample variance.

Appendix F - Rendered images

We show the rendered images by different sampling strategies including the technique presented
here in the results section in Figure 6.1 for 200 samples for sampling methods (a) according
to BRDF. cos(θ), (b) according to environment map, (c) multiple importance sampling with
the balance heuristic α1 = α2 = 1/2 from both BRDF. cos(θ) and environment map, (d) the
method of Lu et al. 2013 computing α by Taylor expansions around 1/2, (e) our MIS method
for equal sample cost, (f) the optimal MIS method that combinatorially explores all weighting
combinations from 160 combinations (considering to take 20% samples in a pilot stage), and
(g) the MIS (α1 = α2 = 1/2) the converged image for 105 samples. The numerical results as
RMSE values are shown in Table 5.2.
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(a) BRDF. cos(θ)
sampling
200 samples

(b) EM
sampling
200 samples

(c) MIS 50-50
sampling
200 samples

(d) Lu et al.
sampling
200 samples

(e) Our
method
200 samples

(f) Best MIS
weighting
200 samples

(g) Reference
MIS 50-50
105 samples

Figure 6.1: The rendered images as rectangle textures for 200 samples for tested algorithms.
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Appendix G - Notation

x . . . point in space
X . . . function domain such as f(x) or for integration dx
n,m . . . number of samples
X,Y . . . distributions such as random variables
fr(x, ωi, ωo) . . . bidirectional reflectance distribution function (BRDF)
f(X) . . . function corresponding to pdf
g(X) . . . function of random variable X
N . . . number of samples
nk . . . number of samples for k-th sampling strategy
~n . . . normal vector
E[X] . . . mean of distribution X
V [X] . . . variance of distribution X
E[g(X)] . . . mean of function g(X)
V [g(X)] . . . variance of function g(X)
σ . . . standard deviation
Ej [g(X)] . . . mean of function g(X) when samples are drawn from according to hj(x)
Vj [g(X)] . . . variance of function g(X) when sampling are drawn from according to hj(x)
pdf . . . probability density function
I . . . integral of a function
f(x) . . . function to be used as pdf for importance sampling
xi . . . the i-th sample drawn
h(x), hk(x) . . . function being integrated
s . . . normalization factor of sampling function h(x), s =

∫
h(x)dx

k, j, l . . . subindex in
∑

and Π.
µ . . . mean value of estimated variable
µk, µj . . . mean value of the estimated variable when sampled according to hk(x)
ck . . . cost of a single sample for k-th sampling strategy
α . . . coefficient of mixture of two functions α ∈ 〈0, 1〉
αk . . . ratio of samples from the k-th sampling strategy

∑
k αk = 1

tk . . . auxiliary variable for the k-th sampling strategy tk = αk/sk
λ . . . the auxiliary variable for the Lagrange multipliers method
ω . . . direction vector
d . . . delta for integration such as dx
Ω . . . the hemispherical domain
S . . . the spherical domain
i . . . notation of the incoming direction for ωi
o . . . notation of the outgoing direction for ωo
L(x, ωo) [ W

m2sr
]. . . (outgoing) radiance from point x in direction ωo

R(ωi) [Wsr ]. . . (incoming) radiant intensity in direction ωi
θ . . . angle between normal ~n and some direction ω
U . . . number of mixture combinations tested in the algorithm
b . . . index of the b-th sampling batch
B . . . number of batches
Λ . . . the equalized quantity in sampling algorithm
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