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Abstract

This technical report summarize results of three-year project which dealt with research in
the area of reconstruction and generation of virtual cities. The project connects several
fields of research like 3D reconstruction, procedural generation of cities and buildings,
grammar extraction, agent technologies, cloud computing, user interaction and further.
The unpublished results are presented together with references on published papers. All
results and working data were collected at one place and references to this place are
mentioned at appropriate parts.
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1 Introduction

Several promising research fields were explored in last three years during the ViCiTiS project.
The project name was chosen with respect to the main research topic about reconstruction and
generation of virtual cities. The main task of the project was to explore and simulate Virtual
Cities in Time and Space in distributed environment on different platforms. For this task were
developed following research topics: 3D reconstruction, procedural generation of buildings and
cities, grammar extraction, cloud computing, agent technologies, user interaction and further.

Several prototype applications from each field of research were developed during the project.
Some of those applications and results were already presented on scientific conferences and
journals. The rest of created applications were small tests or incomplete works not suitable for
conference presentations. This report summarizes all the unpublished and published work and
results of the project. The already published work is presented in less detail with references on
original publications.

The organisation of the report corresponds to main research fields and project objectives.
In Chapter 2 are presented experimental platform for 3D reconstruction and testing data sets
created during the project. The procedural generation of cities and buildings is summarized
in Chapter 3 and in Appendix A is connected unpublished overview of architectural styles in
Europe. In Chapter 4 are described systems enabling visualization of different data types on
different platforms and a data distribution. The final step of project was integration of previous
parts together. This step was developed only in last year of the project for this reason only
preliminary work in the integration is presented in Chapter 5.

2



2 3D Reconstruction of Buildings and
Cities

A prototype application for testing 3D reconstruction algorithms and procedures was developed
as essential part of ViCiTiS project. The 3D reconstruction application is called ArchiRec3D .
This application is split into several self-sufficient parts communicating by events which brings
high variability for reconstruction testing. In the following sections are described main features
and principles of ArchiRec3D application. Main idea of ArchiRec3D was already described in
two related works. In a paper [SZ12] was presented a 3D reconstruction core, while in poster
[STZ12] was suggested 3D recosntruction in virtual environment which is related to section 2.3.
We are focused on users who want to re-use the application in this text.

At the end of this chapter are described data sets formed during the project for ArchiRec3D
testing.

+

segmentation

relations

pointcloud
completion loop

low-poly output

Figure 2.1: Program workflow overview

2.1 Application architecture

The ArchiRec3D application was designed with emphasis on highest variability and separa-
bility. Our 3D reconstruction is based on pre-calibrated scenes which can be imported from
various formats like is Bundler [SSS06] or APERO [DC11]. The reconstruction algorithms
and procedures, see section 2.2, are then applied on imported pointclouds and calibrated pho-
tos. A core is an essential application part communicating with other application modules
which are briefly described in this section. The application binaries and sources are located at
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\\cent\cg\vicitis\3D_rec\ArchiRec3D\.
We have also implemented import possibilities for other formats like: pointclouds in ply

or txt, geometry obj. The final models or pointclouds can be exported to following formats:
VRML, X3D, obj.

User interaction - the main user interaction with ArchiRec3D is in 2D view, where user
label geometrical objects in the photos. The reconstructed 3D geometry is then visible in 3D
view for the posibility of verification. We have implemented several user interactions usable
for scene reconstruction and navigation in 3D view, like: store of actual view, annotation
of model part, modification of scene origin, measuring in pointcloud and setting pointcloud
scale. The user is also informed about state of the application during the work like: display
of memory management, thumbnail of chosen photo, statistical informations about pointclouds
and geometry.

Application views controls and visualize the main functions of the application. The most
interesting of implemented are 2D editor, 3D view, pairs visualiser, CG ball synchro-
nization. The 2D editor is for main user input, see Fig. 2.2 left. The reconstructed geometry is
depicted in the 3D view, see Fig. 2.2 right. A special user interface was created for calibration
of multi-view system called CGball, see Fig. 2.3. The CGball is a sphere of the normal ball size
capturing 6 video streams around the sphere surface.

Figure 2.2: Editor and 3D view. The plane primitives (right) are generated based on user
defined segmentation (left). The 3D reconstruction is displayed before final step, see section
2.2.

Event model - modules work independently with data in application core and only inform
rest of application modules about changes (eg. data loadded, visibility changed,...) by sending
event messages. Each module can register for listening for appropriate events and react on
them.

Events have three fields (source, actionType, caller). Source is scene object related to event
(e.g. point-cloud, mesh, ...). Action type corresponds to what was done with the object, caller
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Figure 2.3: CG ball time synchronization

is module responsible for object change. Action type is one of the following (ADDED, REMOVED,
SELECTED, INNER_DATA_CHANGED, VISIBILITY_CHANGED). Modules register as event listeners in
EventRegister and events are also fired through this class. ArchiRec3D events extends java
event model (java.util.Event*), all related sources are in package vicitis.GUI.eventModel.

With this design, we can react only on changes closely related to the module (e.g. module can
update view if point-cloud is changed by segmentation algorithm). This design also enables us
to distribute events across distributed networks with connection manager mentioned in section
2.3-Other Systems.

2.2 3D reconstruction

The core of our approach is geometry primitives fitting based on source photo segmentation,
see Fig. 2.1. The graph-cut image segmentation is driven by inaccurate user strokes. The image
segmentation is then used for labelling of sparse pointcloud points and is also propagated to
close photographs. Various geometry primitives are then fitted on labelled points. Thanks
to user-defined relations between adjacent geometrical structures, final polygonal geometry is
computed. Following algorithms were applied for successfully 3D reconstruction.

Image segmentation is based on well known segmentation technique of finding minimal
cut on rated graph. Two algorithms were used. The first one is Boykov Graph-cut algorithm
[BVZ01]. The second one is a new implementation of graph-cut algorithm specially designed
for regular structures called Grid-cut [JSH12]. The second implementation brings much faster
segmentation of input photograph, what is necessary for real-time interaction. The details about
graph construction are described at [SZ12], section Image Labelling.

Both algorithms are implemented in C language (original authors implementations) and they
are connected to our reconstruction application using JNI technology (Java Native Invocation).
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algorithm / image width 640px 2048px 4096px

boykov segmentation 553ms 15.479s 127.4s
max-flow 278ms 13.066s 117.353s

grid-cut segmentation 431ms 7.172s 60.433s
max-flow 154ms 5.028s 51.652s

Table 2.1: Comparison of Boykov / Grid-cut segmentation algorithm

We have compared both implementations and results are presented in table 2.1. The same user
strokes (15 labels) were used for segmentation of differently scaled input photo (the same strokes,
the same photo). The whole segmentation time is composed of three consecutive steps: graph
construction, max-flow computation, and results reading. The times in the table corresponds to
complete segmentation time, that is sum of times of all three steps, and to max-flow time (only
the middle step). The graph construction and results reading times are influenced by data shift
between technologies (C language ⇔ Java), while the max-flow time is pure computation time
of algorithms. The results shows that grid-cut implementation of max-flow algorithm is more
efficient than Boykov graph-cut. Based on these results we have set optimal image width to
800px, this attribute can be changed in ArchiRec3D settings file.

3D reconstruction algorithms are used for generation of primary geometry based on seg-
mented photographs and segmentation propagated to the pointcloud. Three different geometry
types are created based on user strokes: planar primitives, spheres, and irregular meshes. The
algorithms for finding parameters necessary for those geometry construction are presented in
following paragraphs.

The planar primitives are find using pointcloud points only. The RANSAC algorithm is
used to robustly estimate a plane attributes from sparse pointcloud points, if there are 3 points
minimally. After RANSAC estimation the finest solution is found using least square while only
inliers from RANSAC-phase are used.

Similarly as with planar primitives, the huge irregular meshes are generated from point-
cloud points (from dense points with normals). The poisson algorithm is used, [KBH06]. All
generating points are exported to ply (Stanford Triangle Format) file and external program is
called to process them. The mesh is than colored by colors of closest points in the input point-
cloud. The poisson reconstruction is called several times with increasing parametres (octree
depth and solver divider), this results in gradually refining of mesh geometry. The first mesh is
obtained in few seconds (depends on pointcloud size) while the finest solution is displayed after
minutes. User is not disturbed by reconstruction process, because it runs on background and
only mesh refinements are visible time to time. The sample of reconstructed mesh is in Fig.
2.4.

The spheres model parameter finding combines two different data inputs if it is necessary.
Due to the fact, that spherical object do not have much features on object surface there is
unsatisfactory count of detected 3D points. We detect sphere using combination of RANSAC
and Least Square algorithm, if there is enough 3D points, similarly as in planes case. If there
is not enough detected 3D points we found center of circle in the input photograph by edge
detection in segmented area and than, the sphere radi and center can be estimated only with
one 3D point (because is know the line where lies the sphere center and one point on the sphere
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surface).

Final geometry estimation combines all generated geometry primitives to form the final
geometry. The solution for this step is ambiguous in the general case. So the user define relations
between geometrical objects that helps to a decision process to find the output geometry. We
have implemented one decision process that works with each geometry polygon locally and the
final geometry is generated only on relation inputs. This works fine for simpler objects and it
was presented at [SZ12].

The more sophisticated solution can be found using some global optimization method. We
have started with implementation of global solution where all primitives are inserted into BSP
tree. The BSP tree cells are then labelled by rays projected from camera centres to appropriate
3D points in pointcloud. The final solution is than find by graph-cut. Unfortunately this method
does not work yet and we thing that it is the final step for the successful 3D reconstruction.

2.3 Immersive reconstruction

Two systems were developed for the possibility of performing 3D reconstruction in 3D immersive
environment. Both systems displays the 3D view in stereo, the rest of the application is displayed
unchanged. The first one is an application native support described in the following section. The
second one is a synchronization protocol enabling scene editing or viewing on other platforms,
see section 2.3.

Native support

The reconstruction application can be switched to stereo support in dialog called Anaglyph
settings, see Fig. 2.5a. Although the dialog is called anaglyph, another stereo types are imple-
mented (passive mode with polarization glasses, and active mode with shutter glasses). Follow-
ing anaglyph types are implemented: red-blue, red-green, red-cyan (called gray), and coloured
red-cyan with following optimizations (full-color, half-color, optimized), see [Wim07]. The 3D
support is based on java Anaglyph Canvas3D available online at http://sourceforge.net/

projects/anaglyphcanvas3/. The stereo support is disabled by default and can by enabled
in settings.xml by setting field use3DOutputDevice to true. Example of 3D anaglyph view
in compare with normal 3D view is figured out in Fig. 2.4.

Figure 2.4: 3D reconstruction with stereo-view (anaglyph - gray). Input 3D pointcloud (left) is
reconstructred using poisson reconstruction (middle). Final reconstructed mesh is colorized by
input pointcloud, figured in true colors (right).
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(a) (b)

Figure 2.5: Dialogs: (a) Stereo settings; (b) Connection manager.

Other systems

A fast synchronization protocol was designed to port the 3D reconstruction to another plat-
forms.The idea is that lightweight client is developed for each specific platform and it has
response for some parts of the application. The 3D view client was implemented for CAVE
platform used in Institute of Intermedia (IIM) where we have done testing and it was imple-
mented in java also. So we have the possibility to display 3D stereo view on the reconstruction
computer, any other computer with Java3D support (streo wall) or in a CAVE build on cavelib,
see Fig. 2.6. The connection to clients can be established in connection manager (Fig. 2.5b).
We suppose, that clients are listening on an open TCP port waiting for data send by the recon-
struction application. The application does not control what or how the clients displays the data
because the application does not know anything about clients possibilities. The communication
protocol is described in section 5.2.

CAVElib implementation

The support for 3DRec protocol in CAVE system was implemented as a module for cave_framework
- lightweight middleware for developing applications deployable in a CAVE system. cave_framework
can be used with various backends and displayed in a CAVE system (with cavelib backend)
as well as at common computer (using SDL or GLUT backends). Therefore, our implementation
can use the same variety of display devices. Currently, the only application using this module is
objshow (available as a part of cave_framework distribution). There is a support for displaying
multiple modules either at the same time time or as a switchable entities. This enables us to
visualize multiple remote models at the same time. We have currently implemented messages
related to pointclouds only.
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Usage

The simplest command to display the model is as follows:

objshow --model vicitis://X

In order to specify port to listen on or size of points for display, parameters port and point_size

can be used as follows:

objshow --model vicitis://X[port=1234,point_size=0.1]

Source code for cave framework is currently available only upon request from Institute of
Intermedia. It will be published at IIM website in a near future.

Figure 2.6: 3D reconstruction in CAVE - stereo disabled for better visualization.

2.4 Data sets

The ArchiRec3D was tested on several data sets created during the project. Those sets are
composed of calibrated input photographs, sparse point-clouds and dense point-clouds. Sets
were mostly calibrated by bundler [SSS06] and dense point-clouds were generated using PMVS
[FP10]. All data sets are located at \\cent\cg\vicitis\3D_rec\data_sets\. Data sets are
related to city 3D reconstruction but vary in the reconstruction subject and detail. They can be
separated by geometry type into regular structures (like buildings) and free form objects (like
statues). Tables 2.2 and 2.3 summarizes sets.

We have also prepared two public sets for another scientists interested in 3D reconstruction
and model creation. The first one is an extension of previously mentioned data sets. It contains
several buildings around the city of Prague. The biggest set is composed of 20 parts covering
the Charles square in Prague. All buildings around the place and a few statues are captured
in this set. Detailed description of this set containing more then 20M points is at \\cent\cg\

vicitis\3D_rec\data_sets\_www, see Fig. 2.7b.
The second public set are photos of the Langweil model of Prague. The Langweil model

is a paper miniature model of Prague from 18th century created by Antonin Langweil. The
model itself is located in the Museum of Prague. We have selected three parts of model and
make them public available after registration, see Fig. 2.7a. The data set was presented during
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name photographs count sparse point-cloud size dense point-cloud size

amadija 414 121k 2.2M
amadija cupola 59 51k 430k
cervena lhota 159 33k 611k
doudleby 83 53k 1.3M
faust house 146 67k 1.5M
front facade 9 4426 547k
house hubertus 36 21k 380k
jordansky sarkofag 8 5k 340k
computer graphic book 7 653 344k
saalburg gate 59 72k 600k
saalburg oven 18 3303 260k
slany 597 440k 17M
srni 48 14k 400k
radnice gocar 43 10k 951k
vez na vltave 40 1502 64k
zeleny domcek 16 1643 90k

Table 2.2: Overview of data sets, regular structures like buildings.

name photographs count sparse point-cloud size dense point-cloud size

purkyne 35 2496 47k
saalburg stone 26 16k 152k
socha kuks 3 365 36k
telc kalvarie 37 13k 482k

Table 2.3: Overview of data sets, free-form structures, statues mostly.

poster session on Eurographic2011, see [SZ11] and detailed description can be found in technical
report [SBZ12].
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Figure 2.7: Public data sets: (a) Three parts of Langweil model; (b) Charles square dataset.
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3 Cities Procedural Generation

Two main fields of procedural generation were studied during the project. The first was gen-
eration of whole cities which is described in the following sections. The special part of cities
generation is a generation of infinite cities, described in section 3.3 where our approach to infi-
nite cities generation is described in section 3.4. The second field of our study was procedural
generation of buildings and grammar derivation from existing buildings, see section 3.5. In
section 3.6 are summarized results and outputs of our work in this field.

The detailed overview of existing approaches to cities and building generation was presented
at [DSŽ11], together inverse approaches used in computer vision areas where models are found
in images based on defined grammars.

3.1 City modeling approaches

There are two main approaches to procedural city modeling – behavioral and geometrical.
However recently researchers succeeded in combined both approaches together.

3.1.1 Behavioral city modeling

Behavioral approach focus on simulation of city development in time. The simulation starts
with a city layout acquired from a map of a real city o from a artificial one. It is important to
know the type of the building, because it has a significant effect on the city development. The
systems usually distinguish at least three building types – residential, commercial and indus-
trial. The city simulation is often restricted to a regular rectangular grid, only few behavioral
modeling system can work with arbitrary oriented buildings. Visualization of the city is not
usually too much important. Some systems for behavioral city modeling use only simple 2D
visualization. An external program (such as SimCity) can be used for the visualization. A
terrain height/heightmap is usualy not considered during the modeling.

Behavioral city modeling is usually used for city development prediction, urban planning or
computer game simulations.

3.1.2 Geometrical city modeling

The geometrical approach focus on creation of a visually pleasant 3D city model that do not
evolve in time. This approach is usually used for computer games that need a static city model.
Realistic look of the city is the primary goal in geometrical city modeling. The modeling systems
use a heightmap and can have arbitrary oriented buildings. The output of the modeling software
is usually a detailed polygonal city model with textures.

3.1.3 Combined city modeling

In recent years some researchers try to combine both previous approaches together. In 2009
Vanegas et al. [VABW09] presented a system that combines both geometrical and behavioral
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approach in city modeling. Their approach combined both city evolution in time and detailed
realistic 3D look of the city. Weber et al. [WMWG09] presented in 2009 a system, that can
quite precisely predict city development from a city map or create a completely new city.

Figure 3.1: An example of behavioral city modeling published by Lechner et al. [LWWF03] (top)
and its visualization using SimCity 3000 (down). SimCity 3000 is a comercial computer game
developed by Maxis in 1999. Different colors represent different building types/land utilization.

3.2 City modeling workflow

This section presents the most common workflow for city generating based on street network.
This approach was for the first time presented Parish et al. [PM01] in 2001 and now it is used
in nearly all works concerning geometrical procedural city modeling.
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Figure 3.2: General pipeline for city modeling. [VAW+10]

The key part in the workflow is the city road network that is modeled first. The road model
is created using a L-systems [PLH+90] technique extended by context sensitive rules[PM01].
The L-systems were originally developed for procedural modeling of plants, but they can be
used for road network modeling as well.

In 2006 Muller has proposed a new language called CGA (Computer Generated Architec-
ture) [MWH+06] that can be used writing rules for procedural building modeling. The CGA
language is also based on the L-systems but has many substantial extensions. Since then the
CGA language became popular in procedural building modeling area, because the previous
modeling techniques were suitable.

We briefly explain some of the terms used in the area of procedural city modeling:

• Major roads usually represents highways or other big roads. In some modeling systems
these roads must be placed manually. Creating the major roads is the first step in the
city modeling workflow.

• Quarter is a land area enclosed by major roads (with no major roads inside). Quarters
are usually subdivided by minor roads and populated by buildings.

• Minor road is a road inside a quarter used for subdividing the quarter. Minor roads are
usually generated by contex-sensitive L-systems.

• Block is a polygonal-shaped land area enclosed by roads (with no roads inside). Usually
several buildings will be generated inside one block lot. Block lots are usually subdivided
to several building lots.

• Building lot is a land area dedicated for generation of single building.

• Building mass modeling creates rough geometric shape of the building. A building
mass is usually generated by CGA grammar rules.

• Building facade modeling splits building to levels and creates wall geometric. Building
facades is usually generated by CGA grammar rules.

3.3 Generating Infinite Cities on Regular Grid in Real Time

In 2001 and 2003 Greuter et al. presented an approach to procedural generation of infinite cities
in real-time [GPSL03c, GPSL03a]. In his paper the infinite city consists of a regular rectangular
grid of building lots with single building on each block (see fig. 3.3). According to the viewing
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frustum the visible buildings are determined and procedurally generated. Each building lot gets
an integer number according to its coordinates using a hash function (see fig. 3.4). This number
is used as a seed for the pseudo-random building generation of that building lot (see fig. 3.5).
The generated buildings are saved into cache to save system resources.

Figure 3.3: Previous approach in infinite-city rendering published by Greuter et al.[GPSL03b,
GPSL03c] displayed from the street level – real-time rendering, generated online; Note the
regular rectangular shape of the street network. The regular rectangular grid of building lots
does not make the generated city look much realistic.
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Figure 3.4: The rendered buildings are determined using intersection of the viewing frustum and
building bounding boxes.(left) A hash function assigns a seed for the pseudo-random building
generator to each building lot according to its coordinates.(right) Source:[GPSL03a]

3.4 Our approach to Infinite Cities Generation

We have presented a novel technique for generation of pseudo-random infinite cities in a real-
time [DZ11a]. The generated cities can have arbitrarily oriented streets and building blocks
can be arbitrarily shaped. The shapes of city buildings are determined using a pseudo-random
generator that uses building coordinates as the initial generator seed. Our appearance of an
infinite city looks more realistic than in previous approach made by Geuter et al.[GPSL03b,
GPSL03c] (compare figures 3.9 and 3.3).

To verify our approach we have implemented a Silverlight application (.Net equivalent of a
Java applet) that interactively generates infinite street networks according to generator param-
eters. The generated street network can be imported with other tools used for city modeling like
CityEngine[Ers] (see figure 3.8) and converted to polygonal model (see figure 3.9). The buildings
block are pseudo-randomly subdivided according to Paris and Müller[PM01]. For generation of
building geometry we used pseudo-random procedural approach based on grammars that was
described by Müller et al. [MWH+06].

Figure 3.5: In the method of procedural generation of buildings proposed at [GPSL03a] the
building is generated from top to bottom. The roof of the floor consist of two random primitive
shapes. The top floor has the shape of slightly enlarged roof. Each next floor adds one random
primitive shape to its shape. At the end of the process the bottom of the last floor is slightly
reduced. Created building has to be rescaled to fit into its building lot.
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We have created an algorithm for generation of infinite pseudo-random non-periodical arbitrary-
oriented street network that can run on-line in real-time.

3.5 Grammar-based Building Modelling

In computer architecture, grammars are generally used in one of two capacities: Building gen-
eration and building reconstruction. These are two opposite, but complementary approaches
which both exploit the grammar’s capacity to describe a sentence of simple terminal symbols in
terms of their structure and hierarchy. Using a parser, we may then derive a structure from a
string of terminal symbols, or conversely, using a generator, we may repeatedly apply production
rules to create the description of a building satisfying some parameters we choose.

The most developed example of the first application are the CGA grammars of [MWH+06],
which follow the classical workflow of building generation, from building mass to building fa-
cades. The shape grammar is an attributed grammar operating on shape and their spatial
context, the description of which is in turn used as the terminals of a second attributed gram-
mar, which allows the generating engine to generate buildings exhibiting variety based on the
values of pre-determined parameters. In effect, both grammars are used to describe a set of
restrictions we place on the shape of the building; the shape grammar, describing basic opera-
tions, makes sure that the building shape remains locally valid, while the higher-level grammar,
restricting the sequence in which these operations are applied, enforces the particular style or
shape of the building.

An example of the second group of grammars is [VAB10]. This so-called Manhattan-world
Grammar is used as a building description in image-based building reconstruction, wherein
computer vision algorithms are used to determine the parameters of this attributed grammar to
match a photographed building as closely as possible. In this application, a fixed grammar is a
structured way of representing a set of assumptions we accept about the shape of the building
we are trying to reconstruct.

While the mechanics of building descriptions are different in both of these cases, there is a
clear common purpose – to restrict the generated shape so that it represents a valid building
conforming to our requirements, while providing sufficient flexibility so that variety can be

Figure 3.6: Panorama of an infinite city generated in real-time using method [GPSL03a,
GPSL03c]
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Figure 3.7: Our approach - Left: Randomly generated points in an infinite grid; Right: Delaunay
triangulation that forms the streets

Figure 3.8: Our approach - Left: Building blocks/lots generated according Parish and
Müller[PM01]; Right: Generated city - view from above

accounted for.
The reason why the higher-level CGA grammar, as well as Manhattan-world grammar, are

attributed is so that a variety of buildings may be created, either by modifying the sequence of
productions or by tweaking the parameters of geometric operations. In Cityengine [Ers], this
property of CGA grammars is exploited by allowing the generation of different building via
randomization of paramteres within certain allowable ranges. The price for this, however, is
that the grammar has to be carefully constructed so as not to allow invalid building configura-
tions, which could be incurred by selecting parameter values not expected by the author of the
grammar.

In order to produce a variety of plausible buildings, a higher-level CGA grammar first has to
be derived. While the original paper describes a very straightforward way to define a building
from the ground up, it is much more complicated to define a grammar capable of generating an
existing building. Indeed, defining a suitable Manhattan-world grammar is in fact one of the key
contributions of [VAB10]. In our experiments, we have found that deriving such a description is
very work-intensive and a trained user (as in [Vam11] or [DZ11b]) can take days or even weeks
(depending on the complexity of the building in question) to derive such a description, even
when consulting with profesional architects.

Generalizing such a description is an even more formidable task. Even if 1 has met with some
success in doing so manually, the results were deemed unsatisfactory by architectural experts.

1citovat Eleniny goticke budovy
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Figure 3.9: Our approach displayed from the street level – real-time rendering without scene
post-processing, generated offline

The most significant problem appeared to be that the criteria which experts use to determine
conformity with and architectural style and stylistic plausibility are very vague and remained
elusive even after much consultation with experts.

It is tempting, then, to attepmt to produce a more general grammar by abstracting from
grammars describing individual buildings. The structure of a grammar lends itself well to
such merging, as by defining correspondencies between non-terminal symbols, we may merge
their respective production rules and thus arrive at a new grammar defining the entire group of
buildings. Unfortunately, even having solved the task of automatically defining these correspon-
dencies and parameter mappings, such an automatic process would lack a significant amount
of semantic information, determining eg. whether two possible values of a parameter define a
discrete or a continuous range, or if there are cases where corresponding non-terminals are not in
fact interchangeable. Until there is either a set of specific formal criteria the generated building
has to satisfy, or the degrees of freedom within an architectural style are formally described,
this taks remains impractical to solve with any useful result.

3.6 Outputs of our work in Grammar-based Building modelling

We have started with test-case example which should show us that two buildings sharing similar
properties of origin like is a time era, geographical area, and architectural style should be gen-
erated by similar grammars. The selected buildings were Tuscany Palace and Thun-Hohenstein
Palace in Prague build in Baroque style. Two rule files in the CGA grammar were created,
each generating corresponding building. We have tried to to catch and keep architectural style
specific to this kind of buildings when creating a hierarchy of CGA rules. The resulted gram-
mars then have similar shapes that can be measured, compared and evaluated, see Fig. 3.10.
For comparison of our two palaces, it is possible to find the same parts and also differences in
their hierarchies. The test study prove the idea, but also shows the weaknesses of the approach.
The credibility of this approach can be proven only by creating more generating grammars from
wider building spectrum of one style. See [DZ11b], for deeper details.

The results of previous work shows us that if we want to continue in this direction, we
have to choose simpler architectural style (not so visually rich as Baroque style), create more
grammars, possibly automatically and find an automatic comparison algorithm. As the simpler
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(a) (b)

Figure 3.10: One of generated baroque buildings and generating grammar hierarchy.

architectural style was chosen Gothic style, see architectural study at Appendix A. The study
shows us the most common properties of the style. The selected building elements of style were
modelled and used to create several grammars, see Fig. 3.11. Unfortunately we were not able
to find the ways how should be solved the automatic solutions and we have finished work on
this task after second year of research.

(a) (b)

Figure 3.11: Examples of generated Gothic buildings.
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4 Collaborative visualization on different
platforms

4.1 Collaborative environment using cloud

During our effort we have presented a project on building interactive multi-user 3D services in
the Windows Azure cloud[DK12]. The future goal is to build a prototype platform that would
allow creating 3D virtual environments stored in the cloud and accessible by a variety of devices
with very different performance and capabilities. Some of the devices (e.g. mobile phones) may
not even be able to store the entire scene geometry in their memory and will have to use only
partial content downloading. The cloud-side application will automatically and instantaneously
adjust and communicate the evolving world content to reflect the actions and changes effected
by the many users interacting with objects in the 3D environment.

During the implementation we have focused on new Microsoft technologies. For the mobile
client we use mobiles phones with Windows Phone 7 operating system. Rendering of the shop
is based on a combination of Silverlight and XNA. The cloud service is implemented using
the Windows Azure platform and is accessible via a desktop Windows PC or a device with a
different operating system using a browser with Silverlight 5.

To reuse the rendering code between the web browser with Silverlight 5 plugin and Windows
Phone 7, we have created a library that encapsulates the differences between those platforms.
The most challenging issue of the library was with the graphics shaders. Windows Phone 7
forbids using a custom vertex and pixel shader, because it runs on a device with a graphics
chip that does not support shaders and thus only a set of pre-defined shaders can be used.
On the other hand, Silverlight 5 3D does not have some high-level rendering functions to save
downloading size and achieve higher portability. Those functions have to be implemented using
low-level vertex and pixel shaders. Thus Silverlight 5 forces its developers to use shaders.

To overcome the shader problem we had to transfer the pre-defined Windows Phone 7
shaders to Siverlight 5 and implement Windows Phone 7 high-level rendering functions using
low-level Silverlight 5 shaders. In our applications we have to use only those functions available
on both platforms, thus we cannot use other shaders than those that are pre-defined. In March
2012 we plan to provide the XNA Interface library to other developers to ease them developing
3D Silverlight projects for multiple platforms.

Our first prototype of a 3D environment is the 3D Teapot application, a 3D object that
can be manipulated (i.e. changing orientation or color) and observed in real-time by multiple
users simultaneously, using different terminals. The teapot representation is being stored on
Windows Azure. A Web role is used as frontend, while the actual 3D Teapot state is being
permanently stored in Azure SQL and updated with every manipulation of the teapot.
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Figure 4.1: Left: 3D e-Shop with Talking Head on Windows Azure; Right: Code reuse, browser
and phone versions

Figure 4.2: Screenshots of two client versions of the synchronized Windows-Azure-based 3D
Teapot, accessible simultaneously by multiple clients: mobile (XNA-based) and desktop (Sil-
verlight 5 in a browser).
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Figure 4.3: Architecture of the experiment: Up to 24 client instances were simultaneously trying
to connect to the web service to synchronize state of a single object in the database every 100
ms.

Figure 4.4: Tests of multiple parallel clients simultaneously attempting to manipulate an iden-
tical 3D Teapot stored in Windows Azure cloud.
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4.2 Remote collaboration in a CAVE system

We also took another approach to collaborative work, aimed mostly for use with immersive sys-
tems like the CAVE[CNSD+92]. This approach is based on the idea of sharing the visualization
instead of the source data. We proposed and used this architecture in the project CAVE to
CAVE (C2C, 2008 – 2010) [BTH+09, BTH+10].

The basic idea is to get the visualized content from the local system and send it to remote
client(s) as a video stream. We focus on getting as-low-as-possible latency and as-high-as-
possible video quality. In order to be as universal as possible, our soluton aims to be independent
on the application used and doesn’t require any modification of the application. The streamed
content can be accompanied by bidirectional audiovisual data streams from a video cameras to
provide the user with an video conferencing and enable discussion about the content. We have
also implemented a remotely controllable virtual input device (section 4.2.4) to allow the remote
user to control the visualization. The whole system was demostrated on several international
conferences (Terena Networking Conference 2011, Cinegrid Workshop 2011) and described in
[UTZH12].

System overview

For the purpose of sharing visualizations from our CAVE system a framework for video pro-
cessing and streaming has been developed. It provides means for image acquisition, color and
format conversions, compressions, decompressions and transportation. The main goal was to
archive as-low-as-possible latency while maintaining high throughput. The first version of this
framework, developped for project C2C, was extended and enhanced for this project. The core
of the framework was rewritten from scratch. This section describes the framework in it’s cur-
rent state. Some of the features were originaly written for C2C version of the framework and
then ported to the current version during this project. The framework is called libyuri.

4.2.1 Design of libyuri

Video processing pipeline usually consists of several steps that are mostly independent on each
other. By exploiting this feature we can run the processing steps for different video frames
simultaneously and thus increase throughput, provided the underlying computer system can
effectively run several threads of execution at parallel. This is true for most of current CPUs
which have often 2-4 cores allowing to run 1 or 2 threads simultaneously at each of them. This
approach also minimizes performance impact introduced by processing of stereoscopic signal.
On the other hand, the need to hand the data from one processing step to another may introduce
additional latency. To avoid this we separate the steps into threads instead of separate processes,
so we can keep data in common memory space. We also use smart pipes connecting the outputs
and inputs of processing steps that can be tuned to either force processing of all data or to
drop some frames to lower latency when the procesing pipeline is overwhelmed. The pipeline
consists of several processing nodes representing the processing steps. Each of the nodes can
have several inputs and outputs that are connected to other nodes and they form an oriented
graph of the processing pipeline. In our framework the graph is described by an XML file
defining all the processing nodes and links between them. The XML file is processed at runtime
and the pipeline is then created automatically.
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4.2.2 Data acquisition

In order to share data from a running CAVE system (or any other visualization source), we
need to acquire the data being displayed. As we aimed for approach usable independently on
the application used and not requiring modification of the application, we focused on methods
working unintrusively. We have explored several options:

Acquiring data directly from an input of the visualization device (projector, monitor) by
grabbing the signal from video bus (typically VGA, DVI or HDMI). This method has great
advantage of being completely transparent to the visualization application and does not affect
the running application at all. It also provides stable frame rate of the data acquired. On the
other hand, it has some disadvantages that are very limiting for our use: This method needs
to grab whole screen, which makes it unusable for visualizations not utilizing whole screen, like
windowed applications. The acquired frame rate is stable, but usually different from the rate at
which the application produces frames, thus it may lead to some unnecessary processing of the
same frame several times or to skipping some frames. It also requires the visualization system to
be synchronized to vertical blank, otherwise tearing artifacts may appear in the acquired data.
And finally, typical grabbing devices operates on the frame rates usual for common display
(60-80 Hz) and thus can not handle active stereoscopy.

Acquiring the content of the framebuffer. When the visualization application prepared
video frame for display it stores it into a frame buffer and notifies the system that it is ready to
show the image (to swap buffers in double buffer configuration). At this moment we can read
the data from the frame buffer and send them for processing. Our implementation uses this
approach by wrapping the application and hooking onto the call to swap buffer call [TB10].
Advantage of this approach is that we receive exactly the amount of data the visualization
application produces without any duplicates. It is also very easy to process quadbuffer stereo
this way. By hooking onto the calls to setup the projection, we also know the position and
dimension of the application window, so there is no issue with windowed applications. Another
feature is that we can get the content of Z-buffer and thus having the knowledge about the
depth of the scene (ie. for generating new views not rendered by the application). The main
disadvantage is that the data acquisition has to be run in the rendering thread of visualization
application, so it impacts speed of rendering. Also, the processing is done on the same system
as the visualization, so it has to share resources (CPU, memory) with the visualization and may
lead to another slowdown of the application. The latter problem can be solved by setting the
CPU affinity for the visualization application and for the processing to disjunkt groups of CPU
cores.

Recording the calls to the GPU and the replaying it and re-rendering (as in [EF07] or
[HEB+01]). This approach assumes that we can record all commands the application sends to
the GPU (or to the driver of GPU) and then replay the command sequence elsewhere to produce
the same image. The biggest advantage of this approach is the ability to get the video data at
different (possibly much higher) resolution that the visualization application produces. To some
extent it is also possible to get stereoscopic video data even though the application renders only
monoscopic images. The biggest disadvantage is very variable data rate and difficult handling
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of actual data associated with the commands being sent to the GPU. Also the re-rendering
process may be very resource intensive.

Currently the system is ready to use the first two approaches. For our applications using
quad buffer stereo and active stereoscopy it is more suitable to use the frame buffer grabbing
approach.

The system is also able to acquire data from many different sources, mostly video cameras
by using off-the-shelf video capture cards and standard interfaces like IEEE1394 or USB.

4.2.3 Video streaming

After acquiring the visualized data, we have to stream it to the remote client. In past we used
several methods using the RTP protocol (with either raw video or a MPEG2 compressed stream).
The current version is mostly focused on communication with a device MVTP-4k[HKU+10] de-
velopped in CESNET. The primary streaming format is compatible with the format this device
uses and audiovisual data can be streamed to and from this device. This allows very high video
quality (currently HD and 4k resolutions) and low latency. On the other hand, this approach
has very high bandwidth requirements (500Mbps – 1200Mbps per single video stream).

4.2.4 Remote interaction

In order to distribute interactive content we also need to provide means not only to get the
audiovisual content to the remote side, but also to provide the remote user with means to
control the content generation. For this purpose we developed system consisting of simple data
acquisition performed by a python script and a linux kernel module providing virtual input
device that duplicates the actions of remote user in the local system. For transport of these
data we can use any data connection between the the systems, usually we use either a ssh or
raw udp connection (provided by a tool nc).The kernel module has following parameters:

debug Setting debug to 1 enables debug output to the syslog.

local bits Set to 32 or 64 to specify bit width of the local system.

remote bits Set to 32 or 64 to specify bit width of the remote system.

Usage of vev module

The module creates two files in the proc filesystem for data input.

/proc/vev/feed File for inputing raw events directly from /dev/input/event* device. It
respects the values set in local_bits and remote_bits.

/proc/vev/raw File for inputing input events stripped of the timestamps. This requires script
evstrip.py to be applied to the raw data from /dev/input/event*. It is independent
of the bit width of local system.

The module also creates new input event interface for the virtual device (usually stored as
/dev/input/eventX, where X is some number assigned by the kernel). Events generated from
this device are copies of the events written to the module’s /proc interface.
The source for the kernel module vev and the python scripts are available from: \\cent\cg\

vicitis\Vev\vev-0.6.tar.bz2
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4.2.5 Agent-based virtual network

The above methods were demonstrated at several occasions and received quite a positive feed-
back. One of the challenges for each of this presentation was the actual setup of the whole
system. The configuration needs to by manually adjusted to specify correct network addresses,
ports and other location specific configuration options. Also the quality of the video may need
to be adjusted for the quality of network connection available. Another task is to build appro-
priate processing pipeline graph for the application being used as well as to setup any processing
of the video data, if some is needed. All of this is time consuming and slows down deployment
of the system at new locations or for new applications.

Our proposed solution to this problem is agent-based virtual network connecting all the users
and automatically configuring the data acquisition, processing, transmission and adaptations. It
also should serve as a QoS monitor with the ability to dynamically reconfigure the transmission
if the quality of the network is not sufficient. Each of the users or devices that are used in
the system should be represented by an agent. All the agents are aware of the other agents a
periodically check the underlying network for any problem on the communication route and re-
routs the traffic when needed. The agents use several methods to find others and in most cases
should automatically connect to the rest of the virtual network without any user interaction.
The only configuration they should need is the description of their local system, so they can
configure applications and the adaptations. Application specific settings can be stored locally
in the agent configuration.

The idea of an agent-controlled system was already proposed in C2C project and basic agent
node was implemented. During ViCiTiS project, we partially implemented the negotiation of the
content and tested the automatic generation of processing pipeline and starting the transmission.
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5 Integration

5.1 CityEngine plugin

One of the project goals is to design and implemented plugin for the CE, which allows to
control the software from the network. It allows you to connect to it from a remote station and
take advantage of CityEngine tools from distance in real time. The user can also remotely set
grammar rules for desired building models.

For implementation of the plugin we choose Jython scripting language that is integrated
in CityEngine. Our solution consists of the server part written in Jython that controls the
modeling software and the client part that can query the server part for building geometry.

The server part is capable to receive grammar rules for generation of geometry and a shape
of the initial lot for the requested building. Then the server part returns the desired building
geometry to the client part.

5.2 3D reconstruction in Virtual Environment

An environment for multi-user immersive 3D reconstruction was described in Eurographic poster
[STZ12]. The poster present possible solution how the 3D reconstruction can be performed in
immersive 3D environment like CAVE or stereo-wall using tablet PC and control computer.
Fundamental layer of proposed approach is fast lightweight communication protocol designed
specially for synchronization between different platforms (tablet - Android, 3D recosntruction
control computer - Java, CAVE realtime rendering - C++). The protocol described in following
section was fully implemented and tested for Java and C++ language within the project, results
were presented in the poster. The poster task of distributed reconstruction platform was not
been developed, so the protocol contains only actions necessary for visualisation purposes and
need to be extended for this. Figure 5.1 shows two instances of reconstruction application
while the first one is used for editing, the second one is used for model verification from other
viewpoint, data between instances are automatically synchronized.

Communication protocol

Simple protocol is based on TCP communication. The control application distributes messages
to listening clients (visualisation platforms). Each client is listening on an open TCP socket,
the first message sent to clients is NOP message. The connection remain opened until a CLOSE
message is sent. The messages types and formats are described in following sections.

Message format

Each message is composed of four fields in this order: MESSAGE_TYPE, OBJECT_ID, DATA_COUNT, data.
Fields are described in table 5.1.
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message field field type description

MESSAGE_TYPE string, 10chars name and unique message identification, unused chars are spaces
OBJECT_ID long64 object ID, message is related to
DATA_COUNT long64 count of items in data field (*)
data int32 or float32

Table 5.1: Message fields and types.

(*) Data count is based on data types. If we are going to send one 3D point (6 floats, 1 int),
data count will be 1. In case of binary data (e.g. image file) data count is Bytes count (see
Table 5.3). All data types (long64, float32, int32) are coded in big-endian form.

Messages

Messages naturally corresponds to visualisation actions of 3D reconstruction editor. Messages
should invoke actions described in table 5.4.

MESSAGE_TYPE description data

ADD_PC add points to pointcloud pc

UPD_PC (update) delete all pointcloud points and insert new ones pc

ADD_MESH triangular mesh - add points mesh

UPD_MESH (update) triangular mesh - delete and insert mesh data mesh

REMOVE delete object (ID) - (DATA_COUNT=0) no-data
VISIBLE change object (ID) visibility to 0/1 byte
UPD_CAMERA change position and orientation of camera (ID) camera

NOP no operation - for connection testing - (DATA_COUNT=0) no-data
CLOSE close connection - (DATA_COUNT=0) no-data

Table 5.2: Messages used for reconstruction data transfer. Non-trivial data types are described
in following section.

Structures

This section describes non-trivial data types used in synchronization protocol (data field).

structure name data types description

3D_point 3×float32, 3×float32, int32 position, normal, color(*) (DATA_COUNT=1)
pc list of 3D_point (DATA_COUNT=count(3D_point))
mesh pc, long64, list of 3×int32 point data, count of triangular faces,

indexes to point data (DATA_COUNT=count(pc))
camera 3×float32, 3×float32 position, euler orientation (DATA_COUNT=1)

Table 5.3: Message fields and types.
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(*) RGB to int32 conversion:
value = ((r & 0xFF) << 16) | ((g & 0xFF) << 8) | ((b & 0xFF) << 0)

Actions

Actions corresponds to MESSAGE_TYPE.

action description

ADD_PC if not exist PCID, create new PCID

3D_points from message are added to PCID (existing PCID points are unchanged)

UPD_PC if not exist PCID, create new PCID

delete all PCID points
3D_points from message are added to PCID (in PCID are new points only)

ADD_MESH if not exist MESHID, create new MESHID

data from message are added to MESHID

UPD_MESH if not exist MESHID, create new MESHID

delete all MESHID data
data from message are added to MESHID (in MESHID are new data only)

REMOVE delete any scene object OBJID if exists

VISIBLE change visibility of any scene object OBJID if exists
if data==0 hide object, if data==1 show object

Table 5.4: Actions detailed description. Abbreviations legend: PCID - poincloud ID (unique
identification number), MESHID geometrical object (mesh) ID, OBJID - any scene object ID
(geometrical, camera, image, etc.)
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Figure 5.1: Synchronization between two instances of reconstruction software. Left is a master
view with editing possibilities, on the right side is a visualisation client which can be on different
computer and platform.
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6 Conclusion and Future Work

That topic has proved important, prospective for further research, and with the potential for
application in other disciplines (architecture, history, culture, etc.). At the same time we’ve
detected the need for broader vocational point of view and cooperation in the context of the
research methods of computer graphics (2D, 3D). Therefore, we plan to continue to address the
issue within the framework of the newly served SGS application for the year 2013, in which we
will deal with the topic of research in the field of photo-realistic imaging methods in real time.

In the course of the project we have established cooperation with experts from the Faculty
of Civil Engineering, and together with them we are preparing an application-oriented project
in which we want to apply the results of our SGS project (3D reconstruction of buildings). In
cooperation with selected museums in the Czech Republic we want to transfer technologically
undemanding methods into practical use in the field of heritage preservation. We are preparing
the project for a grant program program NAKI of the Czech Ministry of culture.

Partial results of the SGS project were already published in [BTH+09], [BTH+10], [DKH09],
[DZ11a], [DK12], [DSŽ11], [DZ11b], [SZ11], [SZ12], [STZ12], [UTZH12], [TB10].
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Appendix A

Overview of the main architectural styles in Europe

The appendix describes the architectural styles used mainly in Czech, Slovak and other Euro-
pean historical architecture. The appendix has been made by researcher Elena Dušková, which
abandoned the project, however, we consider the results so important that we list them as part
of this technical report.
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Overview of the main ARCHITECTURAL STYLES in Europe 
 

 ROMANESQUE GOTHIC RENNESAINCE BAROQUE CLASSICISM 

Italy 1060-1250 1205-1420 1420-1600 1570-1780 1780-1830 

France 1000-1150 1135-1520 1490-1610 1610-1770 1760-1830 

Spain 1000-1200 1200-1510 1500-1600 1600-1800 1780-1830 

Germany 1020-1250 1235-1520 1520-1660 1660-1780 1755-1830 

England 1066-1200 

1175-1550 
 
Tudor style 
1485-1550 

Elizabethan era 
1550-1610 
Jacobean style 
1610-1640 

1670-1730 
 
Georgian era 
1710-1830 

1820-1840 

 

 
Sources: 

 Wilfried Koch (Universum 2008): Encyklopedie evropské architektury od antiky po současnost 

 José Pijoan (Tatran 1983):  Dejiny umenia 3-4 

 Carol Davidson Cragoe (2008):  Abeceda architektury 

 Gothic architecture and art:  http://www.infoplease.com/ce6/ent/A0821376.html 
 Visual Dictionary Online:  http://visual.merriam-webster.com/ 

 
Pictures: 

 Eugène E. Viollet-le-Duc (19th century): Dictionnaire raisonné architecture française XIe au XVIe siècle 
     http://chateau.rochefort.free.fr/viollet-le-duc/ 

 Wikimedia Commons:   http://commons.wikimedia.org 

 my photo archive (2006-2011) 
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GOTHIC STYLE 

Gothic style features according to  importance 
(Charakteristiky gotického štýlu podľa dôležitosti) 

3 – the most important 2 1 

pointed arch 
(lomený oblúk) 

rose window – rosette 
(rozeta) 

floral decorations 
(rastlinné motívy) 

ribbed vault 
(rebrová klenba) 

tracery 
(kružby) 

niche / aedicule 
(nika / edikula) 

flying buttress 
(vonkajší oporný systém) 

finial 
(fiála) 

mythical figures 
(mýtické bytosti) 

high and narrow window 
(úzke a vysoké okno) 

gargoyle 
(chrlič) 

twin tower cathedrals 
(dvojvežové katedrály) 

high and narrow building 
(vysoká a úzka budova) 

steep roof 
(strmá strecha) 

small side towers 
 (nárožné vežičky) 

 
keystone 
(svorník) 

diamond vault 
(diamantová klenba) 

 
compound pillar 
(zväzkový pilier) 

baldachin 
(baldachýn nad sochou) 

 
console 
(konzola) 

repetition of elements with 
small modifications 
(opakovanie prvku s malými 
obmenami) 

 
… 
(profilácia) 

… 
(cimburie tzv. lastovičí chvost) 

 
shouldered arch 
(sedlový oblúk) 

 

 
ogee arch 
(oslí chrbát) 

 

non geometrical (negeometrické): 
    stained glass (vitráž) 
    lightness (svetlosť a ľahkosť priestoru) 

 
flying buttress: 
Masonry structure in the shape of a partial arch; it supports a wall by transferring the pressure of the vaults onto 
an abutment. 

rose window: 
Large circular bay composed of decorative tracery and stained glass; it is also called a rosette. 

keystone (svorník): 
Found on the top of the vaults Nachádza sa vo vrchole rebrovej klenby. 

console (konzola): 
Hlavica, ktorá je pripevnená k stene a nemá základový stĺp. Slúži ako podporný prvok strechy, klenby, oblúkov 
alebo sôch. Býva zapustená do nosnej steny a sama drží napr. balkón alebo sochu či klenbové rebrá, môže na ňu 
nadväzovať pilaster (stĺp „prilepený“ k stene). 

niche (nika) 
Vyhĺbený výklenok v stene, určený na sochu. 

aedicule (edikula) 
Malá otvorená stavba na umiestnenie sochy, zadnou stranou priliehajúca k stene. 

stained glass: 
Translucent decorative work comprised of an assemblage of glass pieces, usually colored, that fills a bay. 
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3 - pointed arch (lomený oblúk) 

   
Cathedral Reims (F)   St. Vitus Cathedral at Prague (CZ)  St. Vitus Cathedral at Prague (CZ) 

3 - ribbed vault (rebrová klenba) 

    
Illustrative example    Conciergerie Paris (F)    Old Town Square Prague (CZ) 

3 - flying buttress (vonkajší oporný systém) 

    
Cathedral Soissons (F)  Saint Wulfran Church at Abbeville (F)   St. Vitus Cathedral at Prague (CZ) 
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3 - high and narrow window (úzke a vysoké okno) 

   
 Cathedral Amiens (F)   St. Vitus Cathedral at Prague (CZ)  St. Elisabeth Cathedral at Košice (SK) 

3 - high and narrow building (vysoká a úzka budova) 

    
 Donjon Etampes (F)   Cathedral Mantes (F)   Powder Tower Prague (CZ) 

 

 
2 - rose window – rosette (rozeta) 

    
Notre Dame Paris (F)   Notre Dame Paris (F)    St. Vitus Cathedral at Prague (CZ) 

40



Architectural Styles in Europe  Elena Dušková 2011 

 

 

5 

2 - tracery (kružby) 

 
St. Vitus Cathedral at Prague (CZ)  St. Vitus Cathedral at Prague (CZ) Cathedral Beziers (F) 

2 - finial (fiála) 

    
Cathedral Paris (F)      Church Poissy (F)  St. Elisabeth Cathedral at Košice (SK) 

2 - gargoyle (chrlič) 

 
Illustrative example     Illustrative example     Notre Dame Paris (F)  
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2 - steep roof (strmá strecha) 

   
Church Ry (F)    St. Stephen's Cathedral, Vienna (A)  St. Michael Chapel at Košice (SK) 

2 - keystone (svorník) 

  
Cathedral Carcassonne (F)   Cathedral Laon (F)    Powder Tower, Prague (CZ) 

2 - compound pillar (zäzkový pilier) 

   
Church Guerande (F)   Conciergerie Paris (F)    “en délit” Notre Dame Laon (F) 
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2 - console (konzola) 

    
Illustrative example    Old Town Hall, Prague (CZ)   Powder Tower, Prague (CZ) 

2 - … (profilácia) 

 
Notre Dame Paris (F) 

2 - shouldered arch (sedlový oblúk) 

    
The Residence of the Chamber Count, Kremnica (SK)  St. Elisabeth Cathedral at Košice (SK)  Mediaeval house, Kremnica (SK) 
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2 - ogee arch (oslí chrbát) 

 
Mediaeval house, Kremnica (SK)  

 

 
1 - floral decorations (rastlinné motívy) 

 
Church Saint Urbain Troyes (F)   Old Town Hall Prague (CZ)    Prague Castle (CZ) 

1 - niche / aedicule (nika / edikula) 

   ???????… 

Niche fifteenth century (F)  Notre Dame Paris (F)      Notre Dame Paris (F) 
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1 - mythical figures (mýtické bytosti) 

    
Cathedral Paris (F)   St. Elisabeth Cathedral at Košice (SK)  Church of St. Catharine at Kremnica (SK) 

1 - twin tower cathedrals (dvojvežové katedrály) 

   
St. Vitus Cathedral at Prague (CZ)  Westminster Abbey (UK)   Cathedral Reims (F) 

1 - small side towers (nárožné vežičky) 

  
Illustrative example    Powder Tower, Prague (CZ)  
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1 - diamond vault (dimantová klenba) 

  
Mediaeval house, Kremnica (SK)   The Residence of the Chamber Count, Kremnica (SK)  

1 - baldachin (baldachýn nad sochou) 

  
Church of St. Catharine at Kremnica (SK)  Church of St. Catharine at Kremnica (SK) 

1 - repetition of elements with small modifications (opakovanie prvku s malými obmenami) 

  
Church of St. Catharine at Kremnica (SK)     Cathedral Milan (I) 
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1 - … (cimburie tzv. lastovičí chvost) 

 
Prague Castle (CZ) 
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Typical buildings:
Cathedrals 

 Chartres Cathedral (F) 

 Reims Cathedral (F) 

 Notre Dame de Paris (F) 

 St. Stephen's Cathedral, Vienna (A) 

 Westminster Abbey (UK) 

 Milan Cathedral (I) 
Religious buildings 

 The Popes' Palace, Avignon (F) 

 Monastery, Santes Creus (E) 
Secular buildings 

 Doge's Palace, Venice (I) 

 Conciergerie, Paris (F) 

 Town Hall, Münster (D) 

 Silk Exchange, Valencia (E) 

 Castel del Monte (I) 

 

   
 
Gothic in Czech Republic:  

 St. Vitus Cathedral, Prague 

 Church of Our Lady before Tyn, Prague 

 Stone Bell House, Prague 

 Old Town Bridge Tower, Prague 

 St. Barbara Cathedral, Kutná Hora 
Gothic in Slovakia: 

 St. Elisabeth Cathedral, Košice 
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