
Installation Guide and User Manual

Multiple Live Video Environment Map Sampling

Tomáš Nikodým

Czech Technical University in Prage, Czech Republic

February 7, 2014

1 Setting up development environment

In order to compile and deploy code for Nokia N900, it is necessary to install
and configure the development environment. The steps are described in detail
at [FCa] and reviewed in the appendix Installation Guide of [Nik12]. Below, we
give a summary of the development environment and FCam set-up. To make
things clearer, the steps that are to be done on the development machine are
marked [Desktop] and those to be done on the Nokia N900 are marked [N900].

1. Download and install Nokia Qt SDK. [Desktop]

• The installation includes QtCreator IDE, N900 development libraries,
and USB Driver.

2. Update the N900 firmware [N900]

• Required version: 1.3 (20.2010.36-2) or later.

3. Install Mad Developer on N900 [N900]

• This enables remote debugging and deployment on N900 from QtCre-
ator.

4. Set up the connection between the development machine and the N900

• Connect the N900 via a USB cable.

• Set ’Windows Networking’ mode in the Mad Developer. [N900]

• A new LAN connection should be detected on your development ma-
chine. Set a fixed IP address ’192.168.2.14’. [Desktop]

5. Set up the QtCreator [Desktop]

• Go to Tools→ Options and select the tab Linux Devices (depicted in
Figure 1). Set the IP address of the N900 (the default when connected
via a USB cable is 192.168.2.15). To connect for the first time, use
the Mad Developer on your N900 to generate a temporary password.
Then deploy a public key and set the authentication type to key, so
that you no longer need to use a password.

• A detailed description with screenshots is given in [Nok].

6. Install the FCam drivers on N900 [N900]

1



• The easiest way is to install the FCamera application using the Ap-
plication Manager, as it comes with all the drivers we need.

7. Download the FCam development library [Desktop]

• It can be downloaded from [Mae].

• Create an environment variable FCAM_PATH that points to the ex-
tracted folder, so that our project can find the libraries.

Figure 1: Setting up the QtCreator - adding a remote device.

2 Compiling the server side

The project file for the environment map acquisition and processing application
is located in src/N900/N900.pro.

The project uses FCam to control the programmable camera of the Nokia
N900, so in order to compile the project, you need to download and link the
FCam development library. If you have not done so already, set the FCAM_PATH

environment variable to the path where the FCam is located, as described in
Section 1.

Open the N900.pro project in QtCreator, connect the N900 via a USB cable,
set ’Windows Networking’ mode in the Mad Developer and hit the Run button in
the QtCreator. If you successfully completed all the steps described in Section 1,
the application should compile, deploy and run without any problems. Open the
’Compile Output’ panel to see the compilation progress. First, the application
should compile and link. Then, QtCreator connects to the N900 and deploys
the application. Finally, the application is started on the N900. You should see
a lot of messages popping up in the ’Application Output’ panel. To suppress the
debug messages, set the verbose level of the logger to any of the six predefined
levels 1.

1In code, this can be done in the constructor of the Logger class. Refer to refman.pdf for
details.

2



3 Compiling the client side

There are two sample applications that connect to the N900 and read the pro-
cessed data. The first of them, referred to as Visualization 2, displays position
of samples (e.i. directional light sources) and optionally displays a tonemapped
HDR environment map on the background. The second sample application,
referred to as Renderer 3, renders a bunny illuminated by a set of directional
light sources computed on the N900.

Both of the sample applications use the Qt library and have no other depen-
dences. No extra steps are required to compile and link these two applications.

4 Usage

If you successfully completed the steps described in sections 2 and 3, you should
now be able to run the acquisition and processing application (referred to as
server side) on the Nokia N900, as well as the two testing applications (referred
to as client side) on the desktop. In this section, we describe the interface of
these applications.

4.1 Server side (N900)

The communication protocol and the configuration of sampling algorithm are
described in the appendix User manual of [Nik12].

When started, the application reads the intrinsic parameters of the camera
model from the file intrinsics.txt. See Section 5 for details on camera calibra-
tion. The application then listens for incoming connections on port 8080. The
communication protocol is compliant with the HTTP protocol. To test whether
the application is running, connect to it using a web browser. The N900 should
send a simple HTML page as a reply, depicted in Figure 2. The page contains
links to the configuration of the sampling algorithm.

The basic requests are as follows.

IP:port/data

Reads sampling data in plain text format.

IP:port/hdr

Reads an HDR environment map in .hdr format.

IP:port/change?[param]=[value]

Changes parameters of the sampling algorithm.

The protocol for sending sampling data in plain text format (data request)
changed slightly since the writing of [Nik12]. The format is given in Algorithm
14. Refer to the source code of SamplingData::Deserialize() as ultimate
reference.

4.2 Client side

The interface is the same for all testing applications. The GUI is self-explanatory;
below, we describe the most important dialogs, accessed from the menu.

[Remote→Connect to host] Connects to the specified host and reads pro-
cessed results until stopped by the user.

2Project file located at src/Visualization/Visualization.pro
3Project file located at src/Renderer/Renderer.pro
4Current protocol version is 2.

3



Algorithm 1 Format of the response to data requests.

<protocol version>

<algorithm>

<id>

<sample count>

<resX resY>

<x y luminance r g b>

<x y luminance r g b>

...

<x y luminance r g b>

(a) (b) (c)

Figure 2: A set of screenshots from the web based configuration of the sampling
algorithm.

[Remote→Connect to multiple hosts] Connects to multiple hosts and
merges sampling data 5. The list of host addresses is specified as IP:port
pairs, separated by whitespace. If the checkbox Use advanced Q2-Tree
merging is checked, the merging algorithm described in [Nik13] is used.
Otherwise, a naive merging algorithm is used (applies only to Q2-Tree
sampling). The samples field specifies the required number of samples
(e.i. light sources).

[Remote→Connect to environment map provider] Connects to the spec-
ified host and reads the environment maps in .hdr format.

Note that when the application is started without any command line argu-
ments, the multicam feature is not available. Run the application with the ’-m’
option to enable this feature.

5Available only when the application is started with the ’-m’ command line argument

4



Figure 3: A set of screenshots from the Visualization application.

5 Camera calibration

The file containing the intrinsic parameters of the camera model (src/intrinsics.txt)
is automatically copied from the development machine to the N900 during de-
ployment. In order to recompute the camera calibration, use the stand-alone
application based on OpenCV. The project 6 can be compiled and linked us-
ing the QtCreator. The application has a simple command line interface and
requires a set of checkerboard photographs taken from various viewpoints. A
script that semi-automizes the process of taking multiple photographs and down-
loads the photographs from the N900 via wget is available 7. The application
outputs the intrinsics file. It is also possible to modify the file directly on the
N900 without the use of the SDK.

6 Developer’s manual

We provide an API for communication with the server based on the Qt li-
brary [Dig]. All of the API classes inherit from the IClient abstract class, as
illustrated in Figure 4. The GenericHttpClient abstract class implements rou-
tines for initializing and maintaining the connection to the server over HTTP,
as well as error handling. The classes HdrDownloader, HttpDataClient, and
HttpQ2TreeClient implement routines for parsing of received data, which are
specific for any particular type of data request (HDR image, list of directional
light sources, Q2-Tree). The MultiCamClient class allows for simultaneous con-
nection to multiple servers and implements merging of received data. The re-
maining classes that implement the IClient interface but are not described here
serve only for testing or debugging purposes.

The IClient abstract class declares several public members, of which the
following two are essential:

• Signal ’DataReady’: this signal is emitted every time the client receives
updated data from the server. At the time when the signal gets emitted,
the data are already parsed and prepared into a form independent of
the underlying transfer protocol. In the slot handling this signal, the
programmer should use the ReadData() method to read the updated data.

6Project file located at src/CameraCalibration/CameraCalibration.pro
7Script located at scripts/calibration/takeShots.bat; press the camera button on your N900

to take the photo, followed by any key in the terminal to download the photo. The default
USB IP is hardcoded in the script so change it if the device is connected over WiFi.

5



IClient

Client GenericHttpClient HttpClient MultiCamClient SamplingTester

HdrDownloader HttpDataClient HttpQ2TreeClient

Figure 4: Inheritance diagram

• Method ’ReadData()’: this method reads the latest data.

The workflow of a typical usage is as follows.

1. Register a handler for the DataReady signal.

2. Connect to the host (or multiple hosts 8) using the ConnectToHost()
method.

3. On DataReady, read the updated data using the ReadData() method.

The client maintains the connection to the server until stopped by a call
to the Stop() method or by the destructor. The DataReady signal is emitted
once per frame processed on the server device. The use of the data read by
the ReadData() method depends on the particular application. Typically, the
positions and intensities of directional light sources are transferred to the GPU
for illumination computation.

See the attached file ’API documentation.pdf’ for a complete documentation
of the API, and ’refman.pdf’ for a doxygen generated documentation of the
entire project.

References

[Dig] Digia. Qt Project. [Online; accessed 8-January-2013], URL: http://

qt-project.org/.

[FCa] FCam. FCam API - Getting started. [Online; accessed 3-January-2013],
URL: http://fcam.garage.maemo.org/gettingStarted.html.

[Mae] Maemo. FCam Camera Control API: Project Filelist. [Online; accessed
3-January-2013], URL: https://garage.maemo.org/frs/?group_id=

1693.

[Nik12] Tomáš Nikodým. Global Illumination Computation for Augmented Re-
ality. Master’s thesis, Czech Technical University in Prague, May 2012.

[Nik13] Tomáš Nikodým. Multiple Live Video Environment Map Sampling,
2013. [Not yet published].

[Nok] Nokia. Setting Up Development Environment for Maemo
- Configuring Connections in Qt Creator. [Online; ac-
cessed 3-January-2013], URL: http://doc.qt.digia.com/

nokia-qtsdk-1.0.1/creator-developing-maemo.html#

configuring-connections-in-qt-creator.

8The capability to connect to multiple hosts simultaneously is implemented in the Multi-
CamClient class via method ConnectToHosts().

6

http://qt-project.org/
http://qt-project.org/
http://fcam.garage.maemo.org/gettingStarted.html
https://garage.maemo.org/frs/?group_id=1693
https://garage.maemo.org/frs/?group_id=1693
http://doc.qt.digia.com/nokia-qtsdk-1.0.1/creator-developing-maemo.html#configuring-connections-in-qt-creator
http://doc.qt.digia.com/nokia-qtsdk-1.0.1/creator-developing-maemo.html#configuring-connections-in-qt-creator
http://doc.qt.digia.com/nokia-qtsdk-1.0.1/creator-developing-maemo.html#configuring-connections-in-qt-creator

	Setting up development environment
	Compiling the server side
	Compiling the client side
	Usage
	Server side (N900)
	Client side

	Camera calibration
	Developer's manual

