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Abstract

Distance field is a flexible surface representation used in
many applications. We study the algorithms for direct
rendering of distance field surfaces representation via ray
tracing in interactive frame rates. To accelerate the ray
tracing we represent the distance fields by sparse block
grid data structure. We compare the visual quality and
the computation time for different methods of ray-surface
intersection test and for surface normal estimation. We
present a technique to accelerate the computation for pri-
mary rays from camera by projection. We also describe
another technique for faster computation of shadow rays
via volumetric occlusion. We show the results on four
scenes of different complexities.
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1 Introduction

Distance field is a versatile surface representation. Many
applications need to represent dynamic surface that
changes its shape over time in complex and unpredictable
ways. For example, in solid modeling application, user
may want to sculpt the shape of a surface by combination
of adding material to existing model and carving holes
into it. Another example is simulation of splashing wa-
ter, where the interface between water and air needs to be
tracked while it splits apart and merges together. In these
circumstances, distance field representation is often used,
due to its ability to handle operations that deform the sur-
face and change its topology.

In addition to geometric modeling [2, 14] and simula-
tion of liquids [8], applications utilizing distance fields in-
clude metamorphosis [3], geometric texturing [5], model-
ing of snow [10], and volume segmentation [16].

Image of a surface in distance field representation can
be rendered using methods based on rasterization or ray
tracing. Hardware acceleration makes rasterization an at-
tractive option, however, due to the implicit nature of dis-
tance field representation, the surface must be first con-
verted into set of rasterizable geometric primitives [12, 6].
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Figure 1: Distance field as a surface representation. Left:
continuous distance field and a surface represented by its
zero level set. Right: distance field sampled on grid.

Also, even though many sophisticated rendering tech-
niques exist [9], the level of realism achievable with ras-
terization is limited.

Ray tracing is an image synthesis algorithm that is able
to reproduce various optical phenomena. The algorithm
traces individual paths of light as it propagates through
scene. It relies on ability to compute the points where rays
hit the surface. Since rays can be directly intersected with
distance field, the costly conversion of surface into explicit
representation is avoided.

In this paper, we will describe our raytracer that is ca-
pable of rendering surfaces in distance field representation
at interactive frame rates. We designed it as a high quality
rendering front-end for the kind of applications mentioned
above. We thus assume that the surface is fully dynamic
and its distance field can change each frame.

2 Distance Field

Distance field maps point in space to its shortest distance
from nearest point on a surface. To measure the distance,
Euclidean metric is often used. Distance field represents
the surface in an implicit form, as a set of points that have
zero distance to the surface. Example surface and its dis-
tance field is illustrated in Figure 1.

Surface S is defined as the zero level set of function ¢,

S={xeR’|¢(x)=0}.
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Function ¢ : R — R is a signed distance function. At
each point, |¢(x)| is the distance from x to nearest point
y lying on the surface. By convention, the sign of ¢ (x) is
negative when X is inside the surface, and positive when it
is outside:

O (x) = sign(x) - dist(x)

dist(x) = min||x —y||
yeSs

sign (x) —1 if x is inside S
& 1 +1 ifxisoutside S,

where ||-|| is the Euclidean norm. Surface normal n corre-
sponds to the gradient of ¢,

n(x) = Vo(x), and |[Vo|| = 1.

For simple shapes, ¢ can be expressed in analytic form.
However, for practical purposes ¢ is usually represented
using set of samples located at discrete points in subre-
gion of R?. Simple arrangement illustrated in Figure 1
puts samples on vertices of Cartesian grid. When value of
¢ is needed at point x, it is reconstructed from nearby sam-
ples using interpolation. Trilinear interpolation calculates
¢(x) as a linear combination of eight samples located at
vertices of grid cell that contains x.

3 Data Structure

Most applications need actual values of ¢ only at points
that are close to surface, and just the sign of ¢ suffices
away from surface. This allows for sparse sampling of
¢, placing samples only inside narrow band around sur-
face. Several data structures for sparse representation of
distance field were proposed [4, 11, 13].

In our raytracer, we decided to use the sparse block grid
data structure [4] for input distance field representation.
Sparse block grid is easy to implement and allows random
access in O (1) time. Its memory consumption grows with
O (n**%), where n is the number of grid cells along one
axis [4]. Due to these properties, we assume it is likely
that practical applications may utilize sparse block grid as
their internal distance field representation.

Instead of storing samples on whole grid, sparse block
grid divides the grid into coarse blocks and stores only
samples on subgrids corresponding to blocks that are near
the surface. The data structure is illustrated in Figure 2.
Each block of coarse grid contains a flag and a pointer.
The flag indicates whether the block is inside, outside or
near the surface. If block is near the surface, its pointer
points to a fine subgrid that stores the samples of ¢.

4 Ray-Surface Intersection

Given ray r(¢) = 0+ td with origin o and direction d, we
are looking for its first intersection with the surface on
given interval [fin,tmax]. Since surface is defined by the

D outside block
. inside block

@ surface block

7 surface cell

o sample

Figure 2: Compact representation of distance field using
sparse block grid data structure.

zero level set of signed distance function ¢, intersections
occur at roots of @ (r(z)). Thus, the task of finding the
intersection is a root-finding problem. Specifically, for
t € [tmin,tmax], We want to detect if at least one root of
¢ (r(r)) exists, and find the smallest 7 corresponding to
the first root.

4.1 Sparse Block Grid Traversal

The aim of traversal algorithm is to successively visit grid
cells along a ray, identifying cells that contain the surface.
For these cells, a test for an intersection needs to be per-
formed. Traversal terminates as soon as the intersection is
found or once the grid boundary is reached. The process
is illustrated in Figure 3.

The traversal of sparse block grid consists of two nested
loops. The outer loop iterates over blocks of coarse grid.
When a visited block is entirely inside or outside the sur-
face, the loop skips directly to the next block. Otherwise,
the inner loop is invoked. Inner loop iterates over cells
of a surface block and checks each cell if it contains the
surface.

The check is based on comparison of signs of samples
at cell vertices. Since the signed distance ¢ is negative
inside the surface and positive outside, a cell contains the
surface if the signs of samples differ. When such cell is
visited, a test for intersection is performed. If ray inter-
sects the surface inside the cell, the point of intersection is
calculated.

In order to avoid fetching eight samples and checking
their signs at each visited cell, we precompute a compact
bit mask for every surface block. Each bit of the mask cor-
responds to one cell of the surface block. If cell contains
the surface, its bit is set. Bit masks are recomputed every
frame using single sequential pass over the cells of sur-
face blocks. When the cell is visited during surface block
traversal, we only test the corresponding bit in the block’s
bit mask to check if the cell contains the surface.

Grid traversal is initiated by intersecting ray with the
grid’s bounding box. We compute the points where ray
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Figure 3: The process of finding the ray-surface intersection. The ray is first intersected with the grid’s bounding box, and
traverses blocks of the coarse grid (left). When the ray enters a surface block, it starts traversing the cells of the surface
block’s subgrid (middle). When a surface containing cell is encountered, the ray’s intersection with the surface inside the

cell is computed (right).

enters and exits the box using a ray—box intersection algo-
rithm described in [17]. If ray has no intersection with the
bounding box then it misses the grid and cannot intersect
the surface. Otherwise, the grid traversal starts from the
block that contains the point where ray enters the grid’s
bounding box. In case that rays origin is inside the grid,
traversal starts from block containing the origin.

The algorithm for sparse block grid traversal is based on
3D-DDA algorithm [1]. At the beginning of sparse block
grid traversal, we precompute several constants that can
be reused during transitions between coarse and fine grid
traversal in order to reduce their overhead.

4.2 Surface Cell Intersection

When ray enters a cell that contains the surface, its inter-
section with the surface inside the cell needs to be exam-
ined. The simplest method is to assume that the ray always
hits the surface, and set the intersection point to the middle
of points where ray enters and exits the cell. This method
is fast, however, it produces artifacts that are visible espe-
cially on the contour of an object.

More accurate methods are based on finding the roots of
@(r(¢)). Since ¢ is discretely sampled on grid, a continu-
ous function needs to be reconstructed using interpolation.
To reconstruct the value of ¢ at any point inside the cell,
we use trilinear interpolation from eight samples at cell
vertices.

Simple root-finding method first interpolates two values
Oin = ¢(r(tiy)) and @pur = ¢ (r(2,4)) at points where ray
enters and exits the cell. If signs of ¢;, and ¢,,, differ, the
ray has hit the surface. The intersection point is calculated
by approximating the position of a root as the point where
line connecting values ¢;, and ¢,,,; crosses zero,

¢in
¢in - (pout '

Position of root can be further refined, as illustrated in

thit = tin + (tout - tin)

Figure 4. First, the value of ¢ is interpolated at fy,;;. Next,
the interval [#1,1,] is selected from two subintervals [t;,, ;]
and [fr, foue] such that ¢ (r(71)) and ¢ (r(z2)) have different
signs. A new root is then approximated as the zero cross-
ing point of a line that connects values ¢;, and ¢,. When
repeated several times, this process is equivalent to a root
finding technique called the false position method [15].

The convergence of false position method is only linear.
This is not an issue, since we perform only small number
of iterations anyway. We perform fixed number of 1-4 iter-
ations because it is faster than using adaptive termination
criterion, and visual results usually do not improve after
more than 4 iterations.

Figure 4: Locating the ray-surface intersection inside a
cell. Left: ray passing through cell that contains the sur-
face. Right: approximation of root position using first two
steps of false position method.

5 Surface Normal Estimation

At the intersection point, a surface normal n needs to be
evaluated for purposes of shading and spawning of sec-
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ondary rays. In distance field representation, the surface
normal corresponds to the gradient of the distance field.
Since distance field is sampled on grid, the gradient has
to be estimated using a combination of differentiation and
interpolation.

We consider three gradient estimation schemes result-
ing from different ordering in which differentiation and
interpolation is applied. The schemes vary in arithmetic
complexity and in the number of samples they use. They
also differ in the continuity of estimated normals, which
affects the perceived smoothness of surface shape.

The first method is to find analytic derivatives of the
interpolation filter. The filter is differentiated and analyt-
ical expressions of its partial derivatives are found. The
components of V¢ are then obtained by convolving the
samples of ¢ with filter’s partial derivatives.

The second method is to first estimate partial derivatives
of ¢ at sample locations using finite differencing. This
yields values of V¢ at cell vertices. The V@ (x) is then
evaluated at x by interpolating gradients from cell vertices.

In the third method, the value of ¢ is first interpolated
at number of points obtained by offsetting point x along
coordinate axes. Next, V@ (x) is computed by taking finite
differences of interpolated values.

6 Acceleration of Primary Rays

Casting of primary rays can be accelerated by skipping the
traversal of empty blocks that are outside the surface. This
is achieved by reducing the [f;i,%nax] interval so that the
ray starts and stops close to the points where it enters the
first surface block and leaves the last surface block.

To find reduced #,,;, and t,,,4, for each primary ray, we
rasterize surface blocks into min/max-buffers. Instead of
rasterizing six faces of each surface block, we only ras-
terize a conservative bounding square of the block’s pro-
jection onto the image plane. The center of a bounding
square is computed by projecting the block’s center using
the camera matrix, and the width is determined based on
the blocks space diagonal and the depth of its center. Each
square has assigned value ¢ that is equal to the distance
from block’s center to the camera.

Bounding square is computed for each surface block.
Squares that correspond to blocks that are behind the cam-
era are culled. Remaining squares are first sorted by their ¢
values. Next, they are rasterized in back-to-front and front-
to-back order into min-buffer and max-buffer respectively.

Since values t,,;,, and #,,, need not to be precise, the
resolution of min/max-buffers can be lower than the image
resolution. This can result in improved performance when
there is large overdraw of bounding squares.

o

o

1 iteration of

4 iterations of

h S
method midpoint false position | false position
#interpolations 2 2 5
time [ms] 8.0 8.4 11.2

Table 1: Surface cell intersection methods. Upper part
of the torus shows normal in pseudo-color, lower part is
shaded using Phong model.

\Iiwv

o

4

analytic difference of | interpolation
method R . . .
derivative interpolations | of differences
#samples 8 16 24
#interpolations 0 3 1
time [ms] 7.1 9.5 8.4

Table 2: Surface normal estimation methods. Upper part
of the torus shows normal in pseudo-color, lower part is
shaded using Phong model.

7 Acceleration of Shadow Rays

Shadow ray query only has to detect if the ray intersects
the surface, the actual point of intersection is not needed.
This fact can be used together with the information already
stored in sparse block grid to accelerate casting of shadow
rays. Whenever ray passes through block whose flag in-
dicates it is inside the surface, the ray must have also in-
tersected the surface. We use a modified grid traversal to
detect this situation and reduce the number surface cell in-
tersection tests. This approach is inspired by the volume-
tric occluders technique described in [7].

The modified grid traversal first iterates only over
blocks of the coarse grid. Traversal of a fine subgrid is not
invoked when a surface block is visited. Instead, when a
surface block is visited for the first time, the state of traver-
sal variables is stored for a chance of later traversal restart.
The traversal of coarse blocks then speculatively continues
in the hope of encountering block that is inside the surface.
The number of traversal steps elapsed from the first visited
surface block is counted.

When the traversal visits a block that is inside the sur-
face, the ray must have intersected the surface and traver-
sal terminates. When the grid boundary was reached and
no surface block was visited during traversal, the ray has
no intersection with the surface and traversal also termi-
nates. However, if a surface block was visited during the
previous traversal and either the number of elapsed steps
is greater than threshold # or the grid boundary is reached,
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the normal grid traversal is restarted from the first visited
surface block using the stored state of traversal variables.

8 Results

Our raytracer is implemented in C++. The raytracer is par-
allelized using OpenMP. We employ a simple paralleliza-
tion strategy: we divide the whole image into square tiles
of N x N pixels and assign the rendering of individual tiles
to different threads.

Performance was measured on system with two Intel
Xeon E5440 2.83 GHz quad-core CPUs with 6 MB shared
L2 cache and 4 x 32 kB L1 data caches. In all tests the
image resolution was 512 x 512 pixels, and tile size was
set to N = 32 pixels. Rendering was parallelized using 4
threads.

The test scenes were prepared by converting triangle
meshes into distance field representation at several differ-
ent resolutions. We used models of Bunny, Dragon and
Happy Buddha from the Stanford 3D Scanning Reposi-
tory. The subgrid resolution of surface blocks was always
set to 4% samples.

Three methods for surface cell intersection are com-
pared in Table 1, with the number of trilinear interpola-
tions they use for intersection evaluation inside single sur-
face cell, and the total time to render the whole image. To
compare the visual output we used a low resolution dis-
tance field of a torus. Even though the midpoint method is
the fastest, it produces severe visual artifacts. These, how-
ever, tend to be less visible as the size of a surface cell pro-
jection approaches size of the pixel. Results of single and
four steps of the false position method are visually indis-
tinguishable. Thus, in all subsequent test we used single
step of false position method for surface cell intersections.

Surface normal estimation methods are compared in Ta-
ble 2. Normals calculated using the analytic derivatives of
trilinear filter are discontinuous across surface cell bound-
aries, which is pronounced at specular highlights. The in-
terpolation of differences is faster than the difference of
interpolations even though it uses more samples. In sub-
sequent tests we estimated surface normals using interpo-
lation of differences.

The effect of primary ray acceleration using min/max-
buffers is illustrated in Figure 6. The number of sparse
block grid traversal steps is visualized using pseudo-color.
The average number of traversal steps per pixel is clearly
reduced with min/max-buffers.

We compared the rendering performance without pri-
mary ray acceleration and with the acceleration using
min/max-buffers at three different resolutions. The results
are summarized in Table 3. In this test, single primary ray
is cast per pixel, and simple shading model is evaluated at
the intersection point. The use of min/max-buffer led to
improved performance in all cases.

In final test we evaluated the performance of shadow ray
acceleration using modified traversal. For this test, shadow

0 225

Figure 6: Comparison of the number of primary ray traver-
sal steps per pixel with no acceleration (left), and with the
acceleration using min/max-buffers (right).

728 0 110

Figure 7: Comparison of the number of traversal steps and
intersection tests for shadow rays using normal and mod-
ified sparse block grid traversal. Rendered image of the
test scene is shown topmost. Top row: normal traversal.
Bottom row: modified traversal. Left column: number of
traversal steps per pixel. Right column: number of inter-
section tests per pixel.
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Figure 5: Three test scenes Bunny, Dragon, and Happy Buddha.

without 256x256 128x128 64x64
min/max-buffers min/max-buffers min/max-buffers min/max-buffers
#trav. #trav. #trav. #trav.

model resolution steps time steps | time | speedup steps | time | speedup steps | time | speedup

[x10%] [ms] || [x10%] | [ms] [%] || [x10%] | [ms] [%] || [x10%] | [ms] [%]
Bunny 128 x 128 x 100 5733 35.0 2885 | 28.6 18 3009 | 27.7 21 3247 | 283 19
Bunny | 256 x 256 x 200 8915 45.0 2982 | 33.1 27 3186 | 323 28 3502 | 322 29
Bunny | 512 x 508 x 400 15538 69.9 3056 | 51.1 27 3330 | 472 33 4287 | 50.0 28
Dragon 128 x 92 x 60 4264 28.8 2444 | 247 14 2538 | 239 17 2699 | 242 16
Dragon | 256 x 184 x 116 6265 35.2 2536 | 28.1 20 2674 | 273 22 2902 | 274 22
Dragon | 512 x 364 x 232 10435 50.4 2411 | 383 24 2620 | 35.7 29 3260 | 37.5 26
Buddha 56 x 128 x 56 3089 23.8 2225 | 22.1 7 2301 | 214 10 2409 | 21.6 9
Buddha | 108 x 256 x 108 4146 28.0 2467 | 25.8 8 2568 | 259 8 2740 | 253 10
Buddha | 212 x512x212 6028 342 2360 | 33.9 1 2552 | 31.7 7 2973 | 325 5

Table 3: Comparison of primary ray casting performance without acceleration and with the acceleration using min/max-

buffers.

rays are cast to five directional lights. Both the number of
traversal steps and the number of surface cell intersection
tests is recorded.

The effect of shadow ray acceleration is illustrated in
Figure 7. The reduction of number of intersection tests is
noticeable mainly inside large shadow areas on the ground
plane. The number of traversal steps is locally lowered at
some places and raised at other.

We compared the performance of the shadow ray cast-
ing with and without shadow ray acceleration. The re-
sults are summarized in Table 4. Tests were performed
for two values of threshold » used in modified traversal.
The threshold determines for how many steps the coarse
grid traversal continues after the first surface cell is visited
until it is restarted.

Although the number of intersection tests was always
reduced using the modified traversal, the number of traver-
sal steps increased in some cases due to traversal restart,
leading to worse performance than that achieved with nor-
mal traversal.

9 Conclusions and Future Work

In this paper we have presented the techniques behind our
interactive distance field raytracer. Basic methods for ray-
surface intersection and surface normal estimation were
described and compared. We have shown two simple ac-
celeration techniques for casting of primary and shadow
rays and analyzed their performance on three test scenes.
In all tests we achieved reasonable frame rates ranging
from 10 ~ 50 fps.

In future work we would like to investigate means of ac-
celerating the search for intersection either by augmenting
the coarse grid with additional information encoding the
empty space, or by building a hierarchical spatial subdivi-
sion data structure on top of the sparse block grid.
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no acceleration n=12 n=32
#trav. #isect. #trav. #isect. #trav. #isect.

model resolution steps tests time steps tests time | speedup steps tests time | speedup

[x10%] | [x10%] | [ms] || [x10%] | [x10%] | [ms] [%] || [x10%] | [x10%] | [ms] [%]
Bunny 128 x 128 x 100 7639 529 66.4 8259 348 59.4 10.5 8876 320 59.7 10.1
Bunny 256 x 256 x 200 11153 542 82.8 11663 345 72.8 12.2 12360 294 71.6 13.6
Bunny 512 x 508 x 400 18586 472 | 1234 19137 292 | 108.9 11.7 20106 232 106.6 13.6
Dragon 128 x 92 x 60 6694 426 56.6 8145 365 56.7 -0.2 8548 342 56.7 -0.2
Dragon | 256 x 184 x 116 9708 433 68.6 10791 333 64.7 5.7 11731 285 64.5 6.0
Dragon | 512 x 364 x 232 15881 377 96.5 16693 264 87.0 9.9 17550 197 84.4 12.5
Buddha 56 x 128 x 56 734 104 16.6 1015 100 17.9 -7.9 1030 100 17.9 -8.3
Buddha | 108 x 256 x 108 1110 116 19.7 1471 107 21.2 -7.6 1620 106 21.8 -10.4
Buddha | 212 x512x212 1581 96 24.6 1963 84 26.0 -5.9 2295 78 26.6 -8.2

Table 4: Comparison of shadow ray casting performance using normal and modified traversal.
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